[1] LIU Q, CHEN E H, ZHU T Y, et al. Research on educational data mining for online intelligent learning[J]. Pattern Reco-gnition and Artificial Intelligence, 2018, 31(1): 77-90.
刘淇, 陈恩红, 朱天宇, 等. 面向在线智慧学习的教育数据挖掘技术研究[J]. 模式识别与人工智能, 2018, 31(1): 77-90.
[2] ZHENG Q H, DONG B, QIAN B Y, et al. The state of the art and future tendency of smart education[J]. Journal of Computer Research and Development, 2019, 56(1): 213-228.
郑庆华, 董博, 钱步月, 等. 智慧教育研究现状与发展趋势[J]. 计算机研究与发展, 2019, 56(1): 213-228.
[3] YU J F, LUO G, XIAO T, et al. MOOCCube: a large-scale data repository for NLP applications in MOOCs[C]//Procee-dings of the 58th Annual Meeting of the Association for Com-putational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 3135-3142.
[4] XU Y J, GUO J. Recommendation of personalized learning resources on K12 learning platform[J]. Computer Systems and Applications, 2020, 29(7): 217-221.
徐亚军, 郭俭. K12学习平台个性化学习资源推荐[J]. 计算机系统应用, 2020, 29(7): 217-221.
[5] LIN Q K, ZHU Y F, LU H, et al. Improving university faculty evaluations via multi-view knowledge graph[J]. Future Ge-neration Computer Systems, 2021, 117: 181-192.
[6] AGARWAL A, SACHDEVA N, YADAV R K, et al. EDUQA: educational domain question answering system using conce-ptual network mapping[C]//Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, May 12-17, 2019. Piscataway: IEEE, 2019: 8137-8141.
[7] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD Inter-national Conference on Management of Data, Vancouver, Jun 10-12, 2008. New York: ACM, 2008: 1247-1250.
[8] YIH W T, RICHARDSON M, MEEK C, et al. The value of semantic parse labeling for knowledge base question ans-wering[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 201-206.
[9] SUN H T, DHINGRA B, ZAHEER M, et al. Open domain question answering using early fusion of knowledge bases and text[C]//Proceedings of the 2018 Conference on Empi-rical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 4231-4242.
[10] SUN H T, BEDRAX-WEISS T, COHEN W W. PullNet: open domain question answering with iterative retrieval on knowledge bases and text[C]//Proceedings of the 2019 Con-ference on Empirical Methods in Natural Language Proces-sing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 2380-2390.
[11] FENG Y L, CHEN X Y, LIN B Y, et al. Scalable multi-hop relational reasoning for knowledge-aware question answering[C]//Proceedings of the 2020 Conference on Empirical Me-thods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 1295-1309.
[12] SAXENA A, TRIPATHI A, TALUKDAR P. Improving multi-hop question answering over knowledge graphs using know-ledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 4498-4507.
[13] REDDY S, LAPATA M, STEEDMAN M. Large-scale semantic parsing without question-answer pairs[J]. Transactions of the Association for Computational Linguistics, 2014, 2: 377-392.
[14] YIH W T, CHANG M W, HE X D, et al. Semantic parsing via staged query graph generation: question answering with knowledge base[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Pro-cessing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 1321-1331.
[15] DONG L, WEI F R, ZHOU M, et al. Question answering over freebase with multi-column convolutional neural net-works[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Inter-national Joint Conference on Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 260-269.
[16] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 2071-2080.
[17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates Inc, 2017: 5998-6008.
[18] YANG B, YIH W, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015.
[19] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017.
[20] KINGMA D, BA J. Adam: a method for stochastic optimiza-tion[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015.
[21] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th Conference on Neural Infor-mation Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates Inc, 2013: 2787-2795.
[22] SUN Z Q, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]//Proceedings of the 7th International Conference on Learning Representations, New Orleans, May 6-9, 2019. |