[1] ZHOU R, LI J, WANG H. Reverse learning particle swarm optimization based on grey wolf optimization[J]. Computer Engineering and Applications, 2020, 56(7): 48-56.
周蓉, 李俊, 王浩. 基于灰狼优化的反向学习粒子群算法[J]. 计算机工程与应用, 2020, 56(7): 48-56.
[2] CHEN Y, CHEN S. Research on application of dynamic wei-ghted bat algorithm in image segmentation[J]. Computer Engineering and Applications, 2020, 56(14): 207-215.
陈瑶, 陈思. 动态权重的蝙蝠算法在图像分割中的应用研究[J]. 计算机工程与应用, 2020, 56(14): 207-215.
[3] ZHANG D H, YOU X M, LIU S. Dynamic grouping ant co-lony algorithm combined with cat swarm optimization[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 880-891.
张德惠, 游晓明, 刘升. 融合猫群算法的动态分组蚁群算法[J]. 计算机科学与探索, 2020, 14(5): 880-891.
[4] LIU L J, LUO S N, GUO F, et al. Multi-point shortest path planning based on an improved discrete bat algorithm[J]. Applied Soft Computing Journal, 2020, 95: 106498.
[5] LUO K P. A hybrid binary artificial bee colony algorithm for the satellite photograph scheduling problem[J]. Enginee-ring Optimization, 2020, 52(8): 1-12.
[6] CHEN H, LI W D, YANG X A. A whale optimization algo-rithm with chaos mechanism based on quasi-opposition for global optimization problems[J]. Expert Systems with App-lications, 2020, 158: 1-11.
[7] TANG D Y, LIU Z, YANG J, et al. Memetic frog leaping algorithm for global optimization[J]. Soft Computing, 2019, 23(21): 11077-11105.
[8] EL-ASHRY A M, ALRAHMAWY M F, RASHAD M Z. Enhanced quantum inspired grey wolf optimizer for feature selection[J]. International Journal of Intelligent Systems and Applications, 2020, 12(3): 109-121.
[9] SONG P C, PAN J S, CHU S C. A parallel compact cuckoo search algorithm for three-dimensional path planning[J]. Applied Soft Computing Journal, 2020, 94: 1-12.
[10] GUVEN K, SENOL K, FUAT G. Dynamical analysis of a discrete conformable fractional order bacteria population model in a microcosm[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 547: 123864.
[11] ZHANG Q H, LIN F B, ZHONG X Y. On discrete time Beverton-Holt population model with fuzzy environment[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1471-1488.
[12] HUANG G Q, LI T, LU Q Q. Population dynamics-based optimization[J]. Computer Science, 2013, 40(11): 280-286.
黄光球, 李涛, 陆秋琴. 种群动力学优化算法[J]. 计算机科学, 2013, 40(11): 280-286.
[13] HUANG G Q, ZHAO W J, LU Q Q. Population dynamics optimization based on 3 populations Lotka-Volterra model[J]. Computer Science, 2013, 40(8): 214-219.
黄光球, 赵魏娟, 陆秋琴. 基于3种群Lotka-Volterra模型的种群动力学函数优化算法[J]. 计算机科学, 2013, 40(8): 214-219.
[14] SONG X Y, GUO H J, SHI X Y. Theory and application of impulsive differential equations[M]. Beijing: Science Press, 2011.
宋新宇, 郭红建, 师向云. 脉冲微分方程理论及其应用[M]. 北京: 科学出版社, 2011.
[15] JIAO J J, BAO L, CHEN L S. Dynamics on a stage-structured single population model with birth pulse and impulsive harve-sting[J]. Journal of Jilin University (Science Edition), 2011, 49(1): 6-10.
焦建军, 鲍磊, 陈兰荪. 具脉冲出生与脉冲收获阶段结构单种群动力学模型[J]. 吉林大学学报(理学版), 2011, 49(1): 6-10.
[16] GAO S J, CHEN L S. Dynamic complexities in a single-species discrete population model with stage structure and birth pulses[J]. Chaos, Solitons & Fractals, 2005, 23(2): 519-527.
[17] GAO S J, CHEN L S. The effect of seasonal harvesting on a single-species discrete population model with stage structure and birth pluses[J]. Chaos, Solitons & Fractals, 2005, 24(4): 1013-1023.
[18] IOSIFESCU M. Finite Markov processes and their applica-tions[M]. New York: Dover Publications, 1980.
[19] GUTJAHR W J. A graph-based ant system and its converg-ence[J]. Future Generation Computer Systems, 2000, 16(8): 873-888.
[20] CLEC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
[21] AWAD N H, ALI M Z, SUGANTHAN P N, et al. Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization[R]. Singapore: Nanyang Technological University, 2013.
[22] LIANG J J, QU B Y, SUGANTHAN P N, et al. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization: Technical Report 201212[R]. Singapore: Nanyang Technological University, 2013.
[23] GONCALVES J F, WAESCHER G. A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional cutting problem with defects[J]. European Journal of Operational Research, 2020, 86(3): 867-882.
[24] SINGH S S, SING K, KUMAR A, et al. ACO-IM: maxi-mizing influence in social networks using ant colony opti-mization[J]. Soft Computing, 2020, 24(13): 10181-10203.
[25] ARA A L, SHAHI N M, NASIR M. CHP economic dispatch considering prohibited zones to sustainable energy using self-regulating particle swarm optimization algorithm[J]. Iranian Journal of Science and Technology-Transactions of Electrical Engineering, 2020, 44(3): 1147-1164.
[26] ZAHRAN E G, ARAFA A A, SALEH H I, et al. A self learned invasive weed-mixed biogeography based optimiza-tion algorithm for RFID network planning[J]. Wireless Net-works, 2020, 26(6): 4109-4127.
[27] LI Y Z, WANG S H, YANG B. An improved differential evolution algorithm with dual mutation strategies collabora-tion[J]. Expert Systems with Applications, 2020, 153: 28-42.
[28] CHEN H L, YANG C J, HEIDARI A A, et al. An efficient double adaptive random spare reinforced whale optimization algorithm[J]. Expert Systems with Applications, 2020, 154: 71-89.
[29] ELGHAMRAWY S M. Security in cognitive radio network: defense against primary user emulation attacks using genetic artificial bee colony (GABC) algorithm[J]. Future Generation Computer Systems, 2020, 109: 479-487. |