[1] BAYKASO?LU A, AKPINAR S. Weighted superposition attraction (WSA): a swarm intelligence algorithm for optim-ization problems-part1: unconstrained optimization[J]. Applied Soft Computing, 2015, 8: 162-175.
[2] AL-SORORI W, MOHSEN A M. New caledonian crow learning algorithm: a new metaheuristic algorithm for solving continuous optimization problems[J]. Applied Soft Computing Journal, 2020, 92: 106325.
[3] FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine pre-dators algorithm: a nature-inspired metaheu-ristic[J]. Expert Systems with Applications, 2020, 152: 113377.
[4] CHEN Y L, HE F Z, LI H R. A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration[J]. Applied Soft Computing Journal, 2020, 93: 106335.
[5] YIBRE A M, KO?ER B. Improving artificial algae algorithm performance by predicting candidate solution quality[J]. Expert Systems with Applications, 2020, 150: 113298.
[6] HE L F, HUANG S W. An efficient krill herd algorithm for color image multilevel thresholding segmentation problem[J]. Applied Soft Computing Journal, 2020, 89: 106063.
[7] JIANG R, YANG M, WANG S Y. An improved whale optimiz-ation algorithm with armed force program and strategic adju-stment[J]. Applied Mathematical Modelling, 2020, 81: 603-623.
[8] MOHAMED N A, FATIMA D, MOHAMED S. Hybridizing bees algorithm with firefly algorithm for solving complex continuous functions[J]. International Journal of Applied Metaheuristic Computing, 2020, 11(2): 27-55.
[9] ZHOU R, LI J, WANG H. Reverse learning particle swarm optimization based on gray wolf optimization[J]. Computer Engineering and Applications, 2020, 56(7): 48-56.
周蓉, 李俊, 王浩. 基于灰狼优化的反向学习粒子群算法[J]. 计算机工程与应用, 2020, 56(7): 48-56.
[10] WANG L, DING Z S. Improved flower pollination algorithm combining sine cosine algorithm and elite operator[J]. Com-puter Engineering and Applications, 2020, 56(6): 159-164.
王蕾, 丁正生. 融合正弦余弦算法和精英算子的花授粉算法[J]. 计算机工程与应用, 2020, 56(6): 159-164.
[11] HUANG G Q, LU Q Q. Population dynamics optimization algorithm under microbial control in contaminated envir-onment[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1956-1966.
黄光球, 陆秋琴. 污染环境中微生物治理种群动力学优化算法[J]. 计算机科学与探索, 2020, 14(11): 1956-1966.
[12] CHEN L S, MENG X Z, JIAO J J. Biodynamics[M]. Beijing: Science Press, 2009.
陈兰荪, 孟新柱, 焦建军. 生物动力学[M]. 北京: 科学出版社, 2009.
[13] YUAN R, JIANG W H, WANG Y. Saddle-node-Hopf bifu-rcation in a modified Leslie-Gower predator-prey model with time-delay and prey harvesting[J]. Journal of Mathem-atical Analysis and Applications, 2015, 422(2): 2718-2733.
[14] YANG L, ZHONG S M. Dynamics of a diffusive predator-prey model with modified Leslie-Gower schemes and additive Allee effect[J]. Computational and Applied Mathematics, 2015, 34(2): 376-389.
[15] PENG Y H, LIU Y Y. Turing instability and Hopf bifur-cation in a diffusive Leslie-Gower predator-prey model[J]. Mathematical Methods in the Applied Sciences, 2016, 39(14): 427-441.
[16] GHAZIANI R K, ALIDOUSTI J, ESHKAFTAKI A B. Stability and dynamics of a fractional order Leslie-Gower prey-predator model[J]. Applied Mathematical Modelling, 2016, 40(3): 512-534.
[17] FAN J S, ZHOU Y. Uniform local well-posedness for an Ericksen-Leslie??s density-dependent parabolic-hyperbolic liquid crystals model[J]. Applied Mathematics Letters, 2017, 74: 2172-2194.
[18] ZHANG D X, PING Y. Necessary and sufficient conditions for the nonexistence of limit cycles of Leslie-Gower predator-prey models[J]. Applied Mathematics Letters, 2017, 71: 1261- 1289.
[19] ZHANG Z Z, UPADHYAY R K, DATTA J. Bifurcation analysis of a modified Leslie-Gower model with Holling type-IV functional response and nonlinear prey harvesting[J]. Advances in Difference Equations, 2018(1): 473-492.
[20] WEI C J, LIU J N, ZHANG S W. Analysis of a stochastic eco-epidemiological model with modified Leslie-Gower fun-ctional response[J]. Advances in Difference Equations, 2018(1): 119.
[21] SONG J, XIA Y H, BAI Y Z, et al. A non-autonomous Leslie-Gower model with Holling type IV functional res-ponse and harvesting complexity[J]. Advances in Difference Equations, 2019: 299.
[22] RYUSUKE K. Bifurcations of cycles in nonlinear semelparous Leslie matrix models[J]. Journal of Mathematical Biology, 2020, 80(1): 78-92.
[23] HUANG G Q, LU Q Q. Plague infectious disease optim-ization algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(11): 1965-1980.
黄光球, 陆秋琴. 鼠疫传染病优化算法[J]. 计算机科学与探索, 2019, 13(11): 1965-1980.
[24] LIANG J J, QU B Y, SUGANTHAN P N, et al. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization[R]. Singapore: Nan-yang Technological University, 2013.
[25] CHUANG Y C, CHEN C T, HWANG C. A simple and efficient real-coded genetic algorithm for constrained opti-mization[J]. Applied Soft Computing, 2016, 38: 87-105.
[26] KORO?EC P, ?ILC J, FILIPIC B. The differential ant-stigmergy algorithm[J]. Information Sciences, 2012, 192: 82-97.
[27] BEHESHTI Z, SHAMSUDDIN S M. Non-parametric par-ticle swarm optimization for global optimization[J]. Applied Soft Computing, 2015, 28: 345-359.
[28] AL-ROOMI A R, EL-HAWARY M E. Metropolis biogeog-raphy-based optimization[J]. Information Sciences, 2016, 360: 73-95.
[29] MUKHERJEE R, DEBCHOUDHURY S, DAS S. Modified differential evolution with locality induced genetic operators for dynamic optimization[J]. European Journal of Operational Research, 2016, 253: 337-355.
[30] ZHAO Z W, YANG J M, HU Z Y, et al. A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems[J]. European Journal of Operational Research, 2016, 250(1): 30-45.
[31] MERNIK M, LIU S H, KARABOGA D, et al. On clarifying misconceptions when comparing variants of the artificial bee colony algorithm by offering a new implementation[J]. Information Sciences, 2015, 291: 115-127. |