[1] MITA T, KANEKO T, HORI O. Joint Haar-like features for face detection[C]//Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, Oct 17-20, 2005. Washington: IEEE Computer Society, 2005: 1619-1626.
[2] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Com-puter Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-26, 2005. Washington: IEEE Computer Society, 2005: 886-893.
[3] ZHANG N, DONAHUE J, GIRSHICK R, et al. Part-based R-CNNs for fine-grained category detection[C]//LNCS 8689: Proceedings of the 2014 European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Berlin, Heidelberg: Springer, 2014: 834-849.
[4] GIRSHICK R B. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448.
[5] LIN D, LU C, LIAO R, et al. Learning important spatial pooling regions for scene classification[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 24-27, 2014. Washington: IEEE Computer Society, 2014: 3726-3733.
[6] YAO K S, PENG B L, ZHANG Y, et al. Spoken language understanding using long short-term memory neural networks [C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 24-27, 2014. Piscataway: IEEE, 2014: 189-194.
[7] AHMAD A S, HASSAN M Y, ABDULLAH M P, et al. A review on applications of ANN and SVM for building elec-trical energy consumption forecasting[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 102-109.
[8] REN S Q, HE K M, GIRSHICK R. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intellig-ence, 2015, 39(6): 1137-1149.
[9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceed-ings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washin-gton: IEEE Computer Society, 2016: 779-788.
[10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference, Amsterdam, Oct 11-14, 2016. Berlin,Heidelberg: Springer, 2016: 21-37.
[11] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv:1701.06659, 2017.
[12] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 4278-4284.
[13] CAO G M, XIE X M, YANG W Z, et al. Feature-fused SSD: fast detection for small objects[C]//Proceedings of the 9th International Conference on Graphic and Image Processing, Qingdao, Oct 14-16, 2018. Piscataway: IEEE, 2018: 10615-10626.
[14] LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]//LNCS 11215: Proceedings of the 15th European Conference, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 404-419.
[15] LI Z, ZHOU F. FSSD: feature fusion single shot multibox detector[J]. arXiv:1712.00960, 2017.
[16] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceed-ings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washing-ton: IEEE Computer Society, 2016: 2818-2826.
[17] CHEN H J, WANG Q Q, YANG G W, et al. SSD object dete-ction algorithm with multi-scale convolution feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(6): 1049-1061.
陈幻杰, 王琦琦, 杨国威, 等. 多尺度卷积特征融合的SSD目标检测算法[J]. 计算机科学与探索, 2019, 13(6): 1049-1061.
[18] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applica-tions[J] arXiv:1704.04861, 2017.
[19] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. arXiv:1502.03167, 2015.
[20] ALY H A, DUBOIS E. Image up-sampling using total-varia-tion regularization with a new observation model[J]. IEEE Transactions on Image Processing, 2005, 14(10): 1647-1659.
[21] LU X, LIU K, CHENG Y X. Non-motor vehicle target detec-tion based on deep learning[J]. Computer Engineering and Applications, 2019, 55(8): 182-188.
路雪, 刘坤, 程永翔. 一种深度学习的非机动车辆目标检测算法[J]. 计算机工程与应用, 2019, 55(8): 182-188.
[22] ZHANG Y L, YUAN Y, FENG Y C, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5535-5548. |