[1] MARCUS G. Deep learning: a critical appraisal[J]. arXiv:1801.00631, 2018.
[2] FURBER S B, LESTER D R, PLANA L A, et al. Overview of the SpiNNaker system architecture[J]. IEEE Transactions on Computers, 2013, 62(12): 2454-2467.
[3] MAAS W. Networks of spiking neurons: the third generation of neural network models[J]. Neural Networks, 1997, 10(9): 1659-1671.
[4] MIKAITIS M, LESTER D R, SHANG D L, et al. Appro-ximate fixed-point elementary function accelerator for the SpiNNaker-2 neuromorphic chip[C]//Proceedings of the 2018 IEEE Symposium on Computer Arithmetic, Jun 25-27, 2018. Piscataway: IEEE, 2018: 37-44.
[5] FURBER S B, GALLUPPI F, TEMPLE S, et al. The SpiN-Naker project[J]. Proceedings of the IEEE, 2014, 102(5): 652-665.
[6] YAKOPCIC C, RAHMAN N, ATAHARY T, et al. Solving constraint satisfaction problems using the Loihi spiking neuromorphic processor[C]//Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, Mar 9-13, 2020. Piscataway: IEEE, 2020: 1079-1084.
[7] DENG L, WANG G R, LI G Q, et al. Tianjic: a unified and scalable chip bridging spike-based and continuous neural computation[J]. IEEE Journal of Solid-State Circuits, 2020, 55(8): 2228-2246.
[8] WU C H. Brain-like research: building a superbrain for human[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(3): 425-426.
吴朝晖. 类脑研究:为人类构建超级大脑[J]. 浙江大学学报(工学版), 2020, 54(3): 425-426.
[9] POTJANS T C, DIESMANN M. The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model[J]. Cerebral Cortex, 2014, 24(3): 785-806.
[10] VAN ALBADA S J, ROWLEY A G, JOHANNA S, et al. Performance comparison of the digital neuromorphic hardware SpiNNaker and the neural network simulation software NEST for a full-scale cortical microcircuit model[J]. Frontiers in Neuroscience, 2018, 12: 291.
[11] KNIGHT J C, NOWOTNY T. GPUs outperform current HPC and neuromorphic solutions in terms of speed and energy when simulating a highly-connected cortical model[J]. Frontiers in Neuroscience, 2018, 12: 941.
[12] GOODMAN D F, BRETTE R. The briansimulator[J]. Fron-tiers in Neuroscience, 2009, 3(2): 192.
[13] GEWALTIG M M O, DIESMANN M. NEST (neural simu-lation tool)[J]. Scholarpedia, 2007, 2(4): 1430.
[14] HAZAN H, SAUNDERS D J, KHAN H, et al. BindsNET: a machine learning-oriented spiking neural networks library in Python[J]. Frontiers in Neuroinformatics, 2018, 12: 89.
[15] KUNKEL S, SCHENCK W. The nest dry-run mode: efficient dynamic analysis of neuronal network simulation code[J]. Frontiers in Neuroinformatics, 2017, 11: 40.
[16] IZHIKEVICH E M. Which model to use for cortical spiking neurons?[J]. IEEE Transactions on Neural Networks, 2004, 15(5): 1063-1070.
[17] EPPLER J M, HELIAS M, MULLER E, et al. PyNEST: a convenient interface to the NEST simulator[J]. Frontiers in Neuroinformatics, 2009, 2: 12.
[18] YAMAURA H, IGARASHI J, YAMAZAKI T. Simulation of a human-scale cerebellar network model on the K com-puter[J]. Frontiers in Neuroinformatics, 2020, 14: 16.
[19] “pynq. io” [EB/OL]. [2020-08-25]. http://www.pynq.io.
[20] STORNAIUOLO L, SANTAMBROGIO M D, SCIUTO D. On how to efficiently implement deep learning algorithms on PYNQ platform[C]//Proceedings of the 2018 IEEE Computer Society Annual Symposium on VLSI, Hong Kong, China, Jul 8-11, 2018. Washington: IEEE Computer Society, 2018: 587-590.
[21] SCHELLE G. Keynote 1-growing the ReConFig commu-nity through python, zynq and hardware overlays[C]//Procee-dings of the 2016 International Conference on ReConFigur-able Computing and FPGAs, Cancun, Nov 30-Dec 2, 2016. Piscataway: IEEE, 2016: 1.
[22] KUNKEL S, SCHMIDT M, EPPLER J M, et al. Spiking network simulation code for petascale computers[J]. Frontiers in Neuroinformatics, 2014, 8: 78.
[23] ROTTER S, DIESMANN M. Exact digital simulation of time-invariant linear systems with applications to neuronal modeling[J]. Biological Cybernetics, 1999, 81(5/6): 381-402.
[24] TSODYKS M, UZIEL A, MARKRAM H. Synchrony genera-tion in recurrent networks with frequency-dependent synapses[J]. The Journal of Neuroscience, 2000, 20(1): RC50.
[25] MASQUELIER T, THORPE S J. Unsupervised learning of visual features through spike timing dependent plasticity[J]. PLoS Computational Biology, 2007, 3(2): e31. |