[1] DORIGO M, MANIEZZO V, COLORNI A. The ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26(1): 29-41.
[2] DORIGO M, STüTZLE T. Ant colony optimization[M]. ZHANG J, HU X M, LUO X Y, et al. Beijing: Tsinghua University Press, 2007: 68-130.
DORIGO M, STüTZLE T. 蚁群优化[M]. 张军, 胡晓敏, 罗旭耀, 等译. 北京: 清华大学出版社, 2007: 68-130.
[3] DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
[4] ZHANG T , WANG X, WANG Z L. Hierarchy feedback ant colony algorithm for solving secondary delivery problem of petroleum product[J]. Computer Engineering and Applications, 2019, 55(21): 261-270.
张涛, 王昕, 王振雷. 等级反馈蚁群算法求解成品油二次配送问题[J]. 计算机工程与应用, 2019, 55(21): 261-270.
[5] WANG X Y, LUO K. LF ant colony clustering algorithm with global memory[J]. Computer Engineering and Applications, 2019, 55(20): 52-57.
王昕宇, 罗可. 具有全局记忆的LF蚁群聚类算法[J]. 计算机工程与应用, 2019, 55(20): 52-57.
[6] ZHANG Y R, WANG C Y. An improved greedy and ant colony algorithm with mutation operator for TSP[J]. Computer Integrated Manufacturing Systems, 2020, 26(3): 860-870.
张玉茹, 王晨旸. 引入变异算子的改进贪心和蚁群混合算法[J]. 计算机集成制造系统, 2020, 26(3): 860-870.
[7] ZHAO Y W, XIONG R P, QIAO Z, et al. Improved polymorphic ant colony algorithm with predatory search strategy[J]. Computer Engineering and Applications, 2019, 55(14): 115-121.
赵亚文, 熊瑞平, 乔治, 等. 应用捕食搜索策略的改进多态蚁群算法[J]. 计算机工程与应用, 2019, 55(14): 115-121.
[8] PENG Y, WANG J, XIE B F, et al. Improved overlap ant colony optimization algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(8): 1002-1008.
彭岳, 王俊, 谢斌福, 等. 改进的重叠蚁群优化算法[J]. 计算机科学与探索, 2014, 8(8): 1002-1008.
[9] ZHOU K L, GONG D X, ZHANG Y L. Ant colony optimization algorithm for regional destructive reconstruction[J]. Computer Engineering and Applications, 2020, 56(14): 62-67.
周克良, 龚达欣, 张宇龙. 区域破坏重建的蚁群优化算法[J]. 计算机工程与应用, 2020, 56(14): 62-67.
[10] YUAN W H, YOU X M, LIU S. Dual-population ant colony algorithm on dynamic learning mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1239-1250.
袁汪凰, 游晓明, 刘升. 动态学习机制的双种群蚁群算法[J]. 计算机科学与探索, 2019, 13(7): 1239-1250.
[11] JIANG D Y, GE H W. Continuous domain ant colony optimization algorithm based on information exchange strategy[J]. Computer Engineering and Applications, 2019, 55(11): 153-159.
姜道银, 葛洪伟. 基于信息交流策略的连续域蚁群优化算法[J]. 计算机工程与应用, 2019, 55(11): 153-159.
[12] WANG H Q, CAO C X. Research on an intelligent ant algorithm in conjuction with local O3-opt optimization[J]. Computer Application and Software, 2010, 27(10): 89-91.
王华秋, 曹长修. 一种结合O3-opt局部优化的智能蚂蚁算法研究[J]. 计算机应用与软件, 2010, 27(10): 89-91.
[13] GAO W X, LIU S, XIAO Z Y, et al. Butterfly optimization algorithm for global optimization[J]. Application Research of Computer, 2020, 37(10): 2966-2970.
高文欣, 刘升, 肖子雅, 等. 全局优化的蝴蝶优化算法[J]. 计算机应用研究, 2020, 37(10): 2966-2970.
[14] ZHANG W H, GUO M X, HE Y K, et al. An improved butterfly algorithm optimizing particle filter algorithm[J]. Journal of Xi??an University of Science and Technology, 2019, 39(1): 119-123.
张威虎, 郭明香, 贺元恺, 等. 一种改进的蝴蝶算法优化粒子滤波算法[J]. 西安科技大学学报, 2019, 39(1): 119-123.
[15] MENG X P, PIAN Z Y, SHEN Z Y, et al. Ant algorithm based on direction-coordinating[J]. Control and Decision, 2013, 28(5): 782-786.
孟祥萍, 片兆宇, 沈中玉, 等. 基于方向信息素协调的蚁群算法[J]. 控制与决策, 2013, 28(5): 782-786.
[16] JIANG K L, LI M A, ZHANG H W. Improved ant colony algorithm for travelling salesman problem[J]. Journal of Computer Applications, 2015, 35(S2): 114-117.
姜坤霖, 李美安, 张宏伟. 面向旅行商问题的蚁群算法改进[J]. 计算机应用, 2015, 35(S2): 114-117.
[17] LIU Z Q, YOU X M, LIU S. Ant colony algorithm for heuristic dynamic pheromone update strategy[J]. Computer Engineering and Applications, 2018, 54(20): 20-27.
刘中强, 游晓明, 刘升. 一种启发式动态信息素更新策略蚁群算法[J]. 计算机工程与应用, 2018, 54(20): 20-27.
[18] ZHANG D H, YOU X M, LIU S. Dynamic grouping ant colony algorithm combined with cat swarm optimization[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 880-891.
张德惠, 游晓明, 刘升. 融合猫群算法的动态分组蚁群算法[J]. 计算机科学与探索, 2020, 14(5): 880-891. |