计算机科学与探索 ›› 2019, Vol. 13 ›› Issue (10): 1754-1767.DOI: 10.3778/j.issn.1673-9418.1810022
朱宏伟,游晓明,刘升
ZHU Hongwei, YOU Xiaoming, LIU Sheng
摘要: 针对蚁群算法收敛速度较慢,易陷入局部最优等问题,提出一种基于协同过滤策略的异构双种群蚁群算法。针对两个异构种群,引入协同过滤策略,奖励两个种群中蚂蚁更加偏好的路径,使算法更具导向性,加快算法的收敛速度;根据种群之间信息的动态反馈,自适应调整两个种群的交流频率,增加算法多样性;算法停滞时,两个种群协同交互,均化每个种群信息素,跳出局部最优。最后,引入神经网络失活思想,采用城市范围失活的方法,使程序运行时间更短。在对中大规模商旅问题(TSP)测试集仿真实验上,该算法提高了解的质量,保证了算法的多样性,加快了算法的收敛速度。