计算机科学与探索 ›› 2019, Vol. 13 ›› Issue (7): 1239-1250.DOI: 10.3778/j.issn.1673-9418.1806012
袁汪凰1+,游晓明1,刘 升2
YUAN Wanghuang1+, YOU Xiaoming1, LIU Sheng2
摘要: 针对蚁群算法易陷入局部最优与收敛速度较慢的不足,提出了动态学习机制的双种群蚁群算法。该算法重点引入奖惩模型,奖励算子提高算法的收敛速度,惩罚算子增加种群的多样性。由SA-MMAS(adaptive simulated annealing ant colony algorithm based on max-min ant system)和MMAS(max-min ant system)两个种群合作搜索路径,蚁群间根据不同城市规模动态地进行信息素交流,在种群交流后利用奖惩模型对双种群间的学习合作行为给予动态的反馈,从而平衡算法的多样性与收敛速度。通过17个经典旅行商问题(traveling salesman problem,TSP)实例进行验证,结果表明该算法能以较少的迭代次数取得最优解或接近最优解。对于中大规模的TSP问题效果更好,从而验证了算法的高效性和可行性。