[1] QU D K, DU Z J, XU D G, et al. Research on path planning for a mobile robot[J]. Robot, 2008, 30(2): 97-101.
曲道奎, 杜振军, 徐殿国, 等. 移动机器人路径规划方法研究[J]. 机器人, 2008, 30(2): 97-101.
[2] ZHAO J P, GAO X W, LIU J G, et al. Parameters self-adaptive fuzzy ant colony optimization algorithm with sear-ching window for path planning of mobile robot[J]. Control and Decision, 2011, 26(7): 1096-1100.
赵娟平, 高宪文, 刘金刚, 等. 移动机器人路径规划的参数模糊自适应窗口蚁群优化算法[J]. 控制与决策, 2011, 26(7): 1096-1100.
[3] YUAN Y, YE F, LAI Y Z, et al. Multi-AGV path planning combined with load balancing and A* algorithm[J]. Com-puter Engineering and Applications, 2020, 56(5): 251-256.
袁洋, 叶峰, 赖乙宗, 等. 结合负载均衡与A*算法的多AGV路径规划[J]. 计算机工程与应用, 2020, 56(5): 251-256.
[4] CHEN R N, WEN C C, PENG L, et al. Application of im-proved A* algorithm in indoor path planning for mobile robot[J]. Journal of Computer Applications, 2019, 39(4): 1006-1011.
陈若男, 文聪聪, 彭玲, 等. 改进A*算法在机器人室内路径规划中的应用[J]. 计算机应用, 2019, 39(4): 1006-1011.
[5] CHEN Z W, XIA S, LI J X, et al. Serial strategy for rend-ezvous of multiple UAVS based on directional A* algorithm[J]. Control and Decision, 2019, 34(6): 1169-1177.
陈志旺, 夏顺, 李建雄, 等. 基于定向A*算法的多无人机同时集结分步策略[J]. 控制与决策, 2019, 34(6): 1169-1177.
[6] WU Z P, TANG N, CHEN Y L, et al. AUV path planning based on improved artificial potential field method[J]. Con-trol and Instruments in Chemical Industry, 2014, 41(12): 1421-1423.
吴正平, 唐念, 陈永亮, 等. 基于改进人工势场法的AUV路径规划[J]. 化工自动化及仪表, 2014, 41(12): 1421-1423.
[7] DAVOODI M, PANAHI M, MOHADES A, et al. Multi-objective path planning in discrete space[J]. Applied Soft Computing Journal, 2013, 13(1): 709-720.
[8] HUANG J, CHEN H W. Research on global path planning algorithm of mobile robot[J]. Instrument Technique & Sen-sor, 2014(12): 80-83.
黄静, 陈汉伟. 移动机器人全局路径规划算法的研究[J]. 仪表技术与传感器, 2014(12): 80-83.
[9] ZHANG Y, LI S, GUO H. A type of biased consensus-based distributed neural network for path planning[J]. Nonlinear Dynamics, 2017, 89(3): 1-13.
[10] WANG Y, HE T, SILVA P. Wide-band high-accuracy ADC using segmented DAC with DWA and mismatch shaping[J]. Electronics Letters, 2017, 53(11): 713-714.
[11] ZHANG H Q, DOU L H, FANG H, et al. Autonomous indoor exploration of mobile robots based on door-guidance and improved dynamic window approach[C]//Proceedings of the 2009 IEEE International Conference on Robotics and Bio-mimetics, Guilin, Dec 19-13, 2009. Piscataway: IEEE, 2009: 408-413.
[12] LI X Y, LIU F, LIU J, et al. Obstacle avoidance for mobile robot based on improved dynamic window approach[J]. Tur-kish Journal of Electrical Engineering and Computer Sci-ences, 2017, 25(2): 666-676.
[13] VISTA F P, SINGH A M, LEE D J, et al. Design convergent dynamic window approach for quadrotor navigation[J]. In-ternational Journal of Precision Engineering and Manufac-turing, 2014, 15(10): 2177-2184.
[14] DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman pro-blem[J]. IEEE Transactions on Evolutionary Computation, 2002, 1(1): 53-66.
[15] KORF R E. Depth-first iterative-deepening: an optimal ad-missible tree search[J]. Artificial Intelligence, 1985, 27(1): 97-109.
[16] GOLDBERG A V, HARRELSON C. Computing the shortest path: A* search meets graph theory[C]//Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algori-thms, Vancouver, Jan 23-25, 2005. New York: ACM, 2005: 156-165.
[17] XIN Y, LIANG H W, DU M B, et al. An improved A* algo-rithm for searching infinite neighbourhoods[J]. Robot, 2014, 36(5): 627-633.
辛煜, 梁华为, 杜明博, 等. 一种可搜索无限个邻域的改进A*算法[J]. 机器人, 2014, 36(5): 627-633.
[18] HARABOR D, GRASTIEN A. Online graph pruning for path-finding on grid maps[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence, San Francisco, Aug 7-11, 2011. Menlo Park: AAAI, 2011: 1114-1119. |