[1] ZHANG S, YAO L, SUN A X, et al. Deep learning based recommender system: a survey and new perspectives[J]. ACM Computing Surveys, 2019, 52(1): 1-38.
[2] XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Com-puters, 2020, 43(5): 755-780.
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780.
[3] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
[4] ZHANG L, QIAN F, ZHAO S, et al. Network representa-tion learning via variational auto-encoder[J]. Journal of Fron-tiers of Computer Science and Technology, 2019, 13(10): 1733-1744.
张蕾, 钱峰, 赵姝, 等. 利用变分自编码器进行网络表示学习[J]. 计算机科学与探索, 2019, 13(10): 1733-1744.
[5] DING Y, HUANG L, WANG C D. Link prediction based on generative adversarial networks[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 554-562.
丁玥, 黄玲, 王昌栋. 基于生成式对抗网络的链路预测方法[J]. 计算机科学与探索, 2019, 13(4): 554-562.
[6] LEVIE R, MONTI F, BRESSON X, et al. CayleyNets: graph convolutional neural networks with complex rational spectral filters[J]. IEEE Transactions on Signal Processing, 2018, 67(1): 97-109.
[7] YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Con-ference on Knowledge Discovery & Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 974-983.
[8] XU H, MA Y, LIU H, et al. Adversarial attacks and de-fenses in images, graphs and text: a review[J]. International Journal of Automation and Computing, 2020, 17(2): 151-178.
[9] SUN L, DOU Y, YANG C, et al. Adversarial attack and defense on graph data: a survey[J]. arXiv:1812.10528, 2018.
[10] ZüGNER D, AKBARNEJAD A, GüNNEMANN S. Adver-sarial attacks on neural networks for graph data[C]//Procee-dings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 2847-2856.
[11] ZüGNER D, GüNNEMANN S. Adversarial attacks on graph neural networks via meta learning[J]. arXiv:1902. 08412, 2019.
[12] DAI H, LI H, TIAN T, et al. Adversarial attack on graph structured data[J]. arXiv:1806.02371, 2018.
[13] CHEN J Y, CHEN L H, CHEN Y X, et al. GA-based Q-attack on community detection[J]. IEEE Transactions on Computational Social Systems, 2019, 6(3): 491-503.
[14] FANG M H, YANG G L, GONG N Z, et al. Poisoning attacks to graph-based recommender systems[C]//Proceed-ings of the 34th Annual Computer Security Applications Conference, San Juan, Dec 3-7, 2018. New York: ACM, 2018: 381-392.
[15] YU J, GAO M, RONG W, et al. Hybrid attacks on model-based social recommender systems[J]. Physica A: Statis-tical Mechanics and Its Applications, 2017, 483: 171-181.
[16] BREUER A, EILAT R, WEINSBERG U. Friend or faux: graph-based early detection of fake accounts on social net-works[C]//Proceedings of the Web Conference 2020, Taipei,China, Apr 20-24, 2020. New York: ACM, 2020: 1287-1297.
[17] ZHANG Y, KHAN S, COATES M. Comparing and detec-ting adversarial attacks for graph deep learning[C]//Procee-dings of the 2019 International Conference on Learning Representations, New Orleans, May 6-9, 2019: 228-235.
[18] HOU S, FAN Y, ZHANG Y, et al. αCyber: enhancing robustness of Android malware detection system against adversarial attacks on heterogeneous graph based model[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 609-618.
[19] IOANNIDIS V N, BERBERIDIS D, GIANNAKIS G B. GraphSAC: detecting anomalies in large-scale graphs[J]. arXiv:1910.09589, 2019.
[20] ZHANG S, YIN H, CHEN T, et al. GCN-based user represen-tation learning for unifying robust recommendation and fraudster detection[J]. arXiv:2005.10150, 2020.
[21] FENG F, HE X, TANG J, et al. Graph adversarial training: dynamically regularizing based on graph structure[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(6): 2493-2504.
[22] WANG X, LIU X, HSIEH C J. GraphDefense: towards robust graph convolutional networks[J]. arXiv:1911.04429, 2019.
[23] JIN H W, ZHANG X H. Latent adversarial training of graph convolution networks[C]//Proceedings of the 2019 Workshop on Learning and Reasoning with Graph-Structured Representations, Long Beach, Jun 9-15, 2019. Red Hook: Curran Associates, 2019: 2925-2932.
[24] ZüGNER D, GüNNEMANN S. Certifiable robustness and robust training for graph convolutional networks[C]//Pro-ceedings of the 25th ACM SIGKDD International Confe-rence on Knowledge Discovery & Data Mining, Ancho-rage, Aug 4-8, 2019. New York: ACM, 2019: 246-256.
[25] ZüGNER D, GüNNEMANN S. Certifiable robustness of graph convolutional networks under structure perturbations[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, Aug 23-27, 2020. New York: ACM, 2020: 1656-1665.
[26] BOJCHEVSKI A, GüNNEMANN S. Certifiable robust-ness to graph perturbations[J]. arXiv:1910.14356, 2019.
[27] ZHU D, ZHANG Z, CUI P, et al. Robust graph convolu-tional networks against adversarial attacks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 1399-1407.
[28] TANG X, LI Y, SUN Y, et al. Transferring robustness for graph neural network against poisoning attacks[C]//Procee-dings of the 13th International Conference on Web Search and Data Mining, Houston, Feb 3-7, 2020. New York: ACM, 2020: 600-608.
[29] ZHANG X, ZITNIK M. GNNGuard: defending graph neural networks against adversarial attacks[J]. arXiv:2006.08149, 2020.
[30] WANG S, CHEN Z, NI J, et al. Adversarial defense frame-work for graph neural network[J]. arXiv:1905.03679, 2019.
[31] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 2261-2269.
[32] JIN M, CHANG H, ZHU W, et al. Power up! Robust graph convolutional network against evasion attacks based on graph powering[J]. arXiv:1905.10029, 2019.
[33] JIN W, MA Y, LIU X, et al. Graph structure learning for robust graph neural networks[J]. arXiv:2005.10203, 2020.
[34] PEZESHKPOUR P, TIAN Y F, SINGH S. Investigating robustness and interpretability of link prediction via adver-sarial modifications[J]. arXiv:1905.00563, 2019.
[35] WANG B H, ZHANG L, GONG N Z. SybilSCAR: Sybil detection in online social networks via local rule based pro-pagation[C]//Proceedings of the 2017 IEEE Conference on Computer Communications, Atlanta, May 1-4, 2017. Pisca-taway: IEEE, 2017: 1-9.
[36] DAI Q, LI Q, TANG J, et al. Adversarial network embed-ding[J]. arXiv:1711.07838, 2017.
[37] DAI Q Y, SHEN X, ZHANG L, et al. Adversarial training methods for network embedding[C]//Proceedings of the World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 329-339.
[38] XU K, CHEN H, LIU S, et al. Topology attack and defense for graph neural networks: an optimization perspective[J]. arXiv:1906.04214, 2019.
[39] XU K D, LIU S J, CHEN P Y, et al. Towards an efficient and general framework of robust training for graph neural networks[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, May 4-8, 2020. Piscataway: IEEE, 2020: 8479-8483.
[40] CHEN J, WU Y, LIN X, et al. Can adversarial network attack be defended?[J]. arXiv:1903.05994, 2019.
[41] SUN K, LIN Z C, GUO H T, et al. Virtual adversarial training on graph convolutional networks in node classifica-tion[C]//LNCS 11857: Proceedings of the 2nd Chinese Con-ference on Pattern Recognition and Computer Vision, Xi’an, Nov 8-11, 2019. Cham: Springer, 2019: 431-443.
[42] DENG Z, DONG Y, ZHU J. Batch virtual adversarial training for graph convolutional networks[J]. arXiv:1902. 09192, 2019.
[43] ZHOU K, MICHALAK T P, VOROBEYCHIK Y. Adversa-rial robustness of similarity-based link prediction[C]//Pro-ceedings of the 2019 IEEE International Conference on Data Mining, Beijing, Nov 8-11, 2019. Piscataway: IEEE, 2019: 926-935.
[44] MINERVINI P, DEMEESTER T, ROCKT?SCHEL T, et al. Adversarial sets for regularising neural link predictors[J]. arXiv:1707.07596, 2017.
[45] LéCUYER M, ATLIDAKIS V, GEAMBASU R, et al. Certified robustness to adversarial examples with differen-tial privacy[C]//Proceedings of the 2019 IEEE Symposium on Security and Privacy, San Francisco, May 19-23, 2019. Piscataway: IEEE, 2019: 656-672.
[46] BOJCHEVSKI A, KLICPERA J, GüNNEMANN S. Efficient robustness certificates for discrete data: sparsity-aware randomized smoothing for graphs, images and more[J]. arXiv:2008.12952, 2020.
[47] JIA J Y, WANG B H, CAO X Y, et al. Certified robustness of community detection against adversarial structural per-turbation via randomized smoothing[C]//Proceedings of the Web Conference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 2718-2724.
[48] WU H, WANG C, TYSHETSKIY Y, et al. Adversarial examples on graph data: deep insights into attack and defense[J]. arXiv:1903.01610, 2019.
[49] ENTEZARI N, AL-SAYOURI S A, DARVISHZADEH A, et al. All you need is low (rank) defending against adversa-rial attacks on graphs[C]//Proceedings of the 13th Interna-tional Conference on Web Search and Data Mining, Hou-ston, Feb 3-7, 2020. New York: ACM, 2020: 169-177.
[50] MILLER B A, ?AMURCU M, GOMEZ A J, et al. Impro-ving robustness to attacks against vertex classification[C]// Proceedings of the 15th International Workshop on Mining and Learning with Graphs, Anchorage, Aug 5, 2019. New York: ACM, 2019: 1-8.
[51] LUO D, CHENG W, YU W, et al. Learning to drop: robust graph neural network via topological denoising[C]//Pro-ceedings of the 14th ACM International Conference on Web Search and Data Mining, Jerusalem, Mar 8-12, 2021. New York: ACM, 2021: 779-787.
[52] GEISLER S, ZüGNER D, GüNNEMANN S. Reliable graph neural networks via robust aggregation[C]//Procee-dings of the 34th Annual Conference on Neural Infor-mation Processing Systems 2020, Dec 6-12, 2020: 1-13.
[53] PENG S, MINE T. A robust hierarchical graph convolu-tional network model for collaborative filtering[J]. arXiv:2004.14734, 2020.
[54] YU S Q, ZHAO M H, FU C B, et al. Target defense against link-prediction-based attacks via evolutionary perturbations[J]. IEEE Transactions on Knowledge and Data Enginee-ring, 2021, 33(2): 754-767.
[55] LIM M, ABDULLAH A, JHANJHI N Z, et al. Hidden link prediction in criminal networks using the deep reinforce-ment learning technique[J]. Computers, 2019, 8(1): 8.
[56] KENLAY H, THANOU D, DONG X W. On the stability of polynomial spectral graph filters[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, May 4-8, 2020. Piscata-way: IEEE, 2020: 5350-5354.
[57] TAO S C, SHEN H W, CAO Q, et al. Adversarial immuniza-tion for improving certifiable robustness on graphs[J]. arXiv: 2007.09647, 2020.
[58] LOGINS A, LI Y C, KARRAS P. On the robustness of cascade diffusion under node attacks[C]//Proceedings of the Web Conference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 2711-2717.
[59] HE X L, JIA J Y, BACKES M, et al. Stealing links from graph neural networks[J]. arXiv:2005.02131, 2020.
[60] XIE Y Q, LI S, YANG C, et al. When do GNNs work: under-standing and improving neighborhood aggregation[C]//Pr-oceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Jul 7-15, 2020: 1303- 1309.
[61] LI Y Y, CHEN L. Unified robust training for graph neural networks against label noise[J]. arXiv:2103.03414, 2021.
[62] KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning[J]. arXiv:2004.11362, 2020.
[63] TSIPRAS D, SANTURKAR S, ENGSTROM L, et al. Ro-bustness may be at odds with accuracy[J]. arXiv:1805. 12152, 2018. |