[1] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
[2] RILOFF E. Automatically constructing a dictionary for inf-ormation extraction tasks[C]//Proceedings of the 11th Nati-onal Conference on Artificial Intelligence, Washington, Jul 11-15, 1993. Menlo Park: AAAI, 1993: 811-816.
[3] RILOFF E, SHOEN J. Automatically acquiring conceptual patterns without an annotated corpus[C]//Proceedings of the 3rd Workshop on Very Large Corpora, Cambridge, Jun 30, 1995. Stroudsburg: ACL, 1995: 148-161.
[4] JIANG J F. A research about the pattern acquisition for free text IE[D]. Beijing: Graduate University of Chinese Aca-demy of Sciences (Institute of Computing Technology), 2004.
姜吉发. 自由文本的信息抽取模式获取的研究[D]. 北京: 中国科学院研究生院(计算技术研究所), 2004.
[5] CHIEU H L, NG H T. A maximum entropy approach to in-formation extraction from semi-structured and free text[C]//Proceedings of the 18th National Conference on Artificial Intelligence and 14th Conference on Innovative Applica-tions of Artificial Intelligence, Edmonton, Jul 28-Aug 1, 2002. Menlo Park: AAAI, 2002: 786-791.
[6] AHN D. The stages of event extraction[C]//Proceedings of the 2006 Workshop on Annotating and Reasoning about Time and Events, Sydney, Jul 23, 2006. Stroudsburg: ACL, 2006: 1-8.
[7] ZHAO Y Y, QIN B, CHE W X, et al. Research on Chinese event extraction[J]. Journal of Chinese Information Proces-sing, 2008, 22(1): 3-8.
赵妍妍, 秦兵, 车万翔, 等. 中文事件抽取技术研究[J]. 中文信息学报, 2008, 22(1): 3-8.
[8] CHEN Y B, XU L H, LIU K, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 167-176.
[9] YANG S, FENG D W, QIAO L B, et al. Exploring pre-trained language models for event extraction and generation[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 5284-5294.
[10] NGUYEN T H, CHO K, GRISHMAN R. Joint event extraction via recurrent neural networks[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, Jun 12-17, 2016. Stroudsburg: ACL, 2016: 300-309.
[11] SHA L, QIAN F, CHANG B B, et al. Jointly extracting ev-ent triggers and arguments by dependency-bridge RNN and tensor-based argument interaction[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artifi-cial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5916-5923.
[12] CHEN Y B, LIU S L, ZHANG X, et al. Automatically labeled data generation for large scale event extraction[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4,2017. Stroudsburg: ACL, 2017: 409-419.
[13] MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]//Proceedings of the 47th Annual Meeting of the Association for Compu-tational Linguistics, and the 4th International Joint Con-ference on Natural Language Processing of the AFNLP, Singapore, Aug 2-7, 2009. Stroudsburg: ACL, 2009: 1003-1011.
[14] ZENG Y, FENG Y S, MA R, et al. Scale up event extraction learning via automatic training data generation[C]//Procee-dings of the 32nd AAAI Conference on Artificial Intelli-gence, the 30th Innovative Applications of Artificial Intelli-gence, and the 8th AAAI Symposium on Educational Ad-vances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 6045-6052.
[15] YANG H, CHEN Y B, LIU K, et al. DCFEE: a document-level Chinese financial event extraction system based on automatically labeled training data[C]//Proceedings of ACL 2018, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 50-55.
[16] ZHONG W F, YANG H, CHEN Y B, et al. Document-level event extraction based on joint labeling and global reasoning[J]. Journal of Chinese Information Processing, 2019, 33(9): 88-95.
仲伟峰, 杨航, 陈玉博, 等. 基于联合标注和全局推理的篇章级事件抽取[J]. 中文信息学报, 2019, 33(9): 88-95.
[17] ZHENG S, CAO W, XU W, et al. Doc2EDAG: an end-to-end document-level framework for Chinese financial event extraction[J]. arXiv:1904.07535, 2019.
[18] BOJANOWSKI P, GRAVE E, JOULIN A, et al. Enriching word vectors with subword information[J]. Transactions of the Association for Computational Linguistics, 2017, 5: 135-146.
[19] ZHANG Y, YANG J. Chinese NER using lattice LSTM[J]. arXiv:1805.02023, 2018.
[20] YAN H, DENG B C, LI X N, et al. TENER: adapting transformer encoder for name entity recognition[J]. arXiv:1911.04474, 2019. |