[1] CHENG C, YANG H Q, KING I, et al. Fused matrix factori-zation with geographical and social influence in location-based social networks[C]//Proceedings of the 26th AAAI Conference on Artificial Intelligence, Toronto, Jul 22-26, 2012. Menlo Park: AAAI, 2012: 17-23.
[2] ZHANG J D, CHOW C Y, LI Y H. LORE: exploiting sequ-ential influence for location recommendations[C]//Proceed-ings of the 22nd ACM SIGSPATIAL International Confer-ence on Advances in Geographic Information Systems, Dallas, Nov 4-7, 2014. New York: ACM, 2014: 103-112.
[3] WU C Y, AHMED A, BEUTEL A, et al. Recurrent recom-mender networks[C]//Proceedings of the 10th ACM Inter-national Conference on Web Search and Data Mining, Cam-bridge, Feb 6-10, 2017. New York: ACM, 2017: 495-503.
[4] LIU C Y, LIU J P, WANG J, et al. An attention-based spatio-temporal gated recurrent unit network for point-of-interest recommendation[J]. ISPRS International Journal of Geo-Information, 2019, 8(8): 355.
[5] ZHAO P P, ZHU H F, LIU Y C, et al. Where to go next: a spatio temporal gated network for next POI recommendation[C]//Proceedings of the 33rd AAAI Conference on Artifi-cial Intelligence, the 31st Innovative Applications of Artifi-cial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5877-5884.
[6] FENG S S, LI X T, ZENG Y F, et al. Personalized ranking metric embedding for next new POI recommendation[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 2069-2075.
[7] MIKOLOV T, KARAFIáT M, BURGET L, et al. Recurrent neural network based language model[C]//Proceedings of the 11th Annual Conference of the International Speech Com-munication Association, Makuhari, Chiba, Sep 26-30, 2010: 1045-1048.
[8] LIU Q, WU S, WANG L, et al. Predicting the next location: a recurrent model with spatial and temporal contexts[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 194-200.
[9] XU C F, ZHAO P P, LIU Y C, et al. Recurrent convolu-tional neural network for sequential recommendation[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3398-3404.
[10] WANG S J, HU L, CAO L B, et al. Attention-based tran-sactional context embedding for next-item recommendation[C]//Proceedings of the 32nd AAAI Conference on Arti-ficial Intelligence, the 30th Innovative Applications of Arti-ficial Intelligence, and the 8th AAAI Symposium on Educa-tional Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 2532-2539.
[11] YE M, YIN P F, LEE W C, et al. Exploiting geographical influence for collaborative point-of-interest recommenda-tion[C]//Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, Jul 25-29, 2011. New York: ACM, 2011: 325-334.
[12] XU Y, LI X, LI J, et al. SSSER: spatio-temporal sequential and social embedding rank for successive point-of-interest recommendation[J]. IEEE Access, 2019, 7: 156804-156823.
[13] PAN Z G, CUI L, WU X Y, et al. Deep potential geo-social relationship mining for point-of-interest recommendation[J]. IEEE Access, 2019, 7: 99496-99507.
[14] XIONG X, QIAO S J, HAN N, et al. Where to go: an effective point-of-interest recommendation framework for heterogeneous social networks[J]. Neurocomputing, 2020,373: 56-69.
[15] FENG S S, CONG G, AN B, et al. POI2Vec: geographical latent representation for predicting future visitors[C]//Pro-ceedings of the 31st AAAI Conference on Artificial Intelli-gence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 102-108.
[16] LI Y, LUO Y D, ZHANG Z, et al. Context-aware attention-based data augmentation for POI recommendation[C]//Pro-ceedings of the 35th IEEE International Conference on Data Engineering Workshops, Macao, China, Apr 8-12, 2019. Pis-cataway: IEEE, 2019: 177-184.
[17] HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 770-778.
[18] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L, et al. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th Inter-national Conference on World Wide Web, Raleigh, Apr 26-30, 2010. New York: ACM, 2010: 811-820. |