[1] CAO X X. Exploration on the simplified and diversion mechanism of civil and commercial cases in basic courts[J]. Legality Vision, 2019(29): 173-174.
曹小小. 基层法院民商事案件繁简分流机制的探索[J]. 法制博览, 2019(29): 173-174.
[2] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[J]. arXiv:1404.2188, 2014.
[3] LIU P, QIU X, HUANG X. Recurrent neural network for text classification with multi-task learning[J]. arXiv:1605. 05101, 2016.
[4] KIM Y. Convolutional neural networks for sentence classification[J]. arXiv:1408.5882, 2014.
[5] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[6] CHO K, VAN MERRI?NBOER B, GüL?EHRE ?, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014.
[7] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv:1508.01991, 2015.
[8] ZHOU X J, WAN X J, XIAO J G. Attention-based LSTM network for cross-lingual sentiment classification[C]//Procee-dings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 247-256.
[9] YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 1480-1489.
[10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
[11] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[12] XU N, WANG P, CHEN L, et al. Distinguish confusing law articles for legal judgment prediction[J]. arXiv:2004.02557, 2020.
[13] BHATTACHARYA P, GHOSH K, PAL A, et al. Methods for computing legal document similarity: a comparative study[J]. arXiv:2004.12307, 2020.
[14] ZHANG H, WANG X, TAN H Y, et al. Applying data discretization to DPCNN for law article prediction[C]//LNCS 11838: Proceedings of the 8th CCF International Conference on Natural Language Processing and Chinese Computing, Dunhuang, Oct 9-14, 2019. Cham: Springer, 2019: 459-470.
[15] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. arXiv:1502.03167, 2015.
[16] RISH I. An empirical study of the naive Bayes classifier[C]//Proceedings of the Workshop on Empirical Methods in Artificial Intelligence, Seattle, Aug 4, 2001: 41-46.
[17] KEERTHI S S, SHEVADE S K, BHATTACHARYYA C, et al. Improvements to Platt??s SMO algorithm for SVM classifier design[J]. Neural Computation, 2001, 13(3): 637-649.
[18] KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-15.
[19] SRIVASTAVA N, HINTON G E, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |