计算机科学与探索 ›› 2021, Vol. 15 ›› Issue (12): 2353-2361.DOI: 10.3778/j.issn.1673-9418.2010053

• 人工智能 • 上一篇    下一篇

结合CNN与双向LSTM的心律失常分类

李兴秀,唐建军,华晶   

  1. 1. 江西农业大学 计算机与信息工程学院,南昌 330045
    2. 江西农业大学 软件学院,南昌 330045
  • 出版日期:2021-12-01 发布日期:2021-12-09

Arrhythmia Classification Based on CNN and Bidirectional LSTM

LI Xingxiu, TANG Jianjun, HUA Jing   

  1. 1. School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, China
    2. Software College, Jiangxi Agricultural University, Nanchang 330045, China
  • Online:2021-12-01 Published:2021-12-09

摘要:

心律失常是心血管疾病中常见的病症之一,实现心律失常的自动分类对心血管疾病的诊治具有重要意义。基于一维心电信号的心律失常分类方法以若干节拍作为输入,通过模型提取特征并用于分类。针对现有方法预处理时间成本高以及未按医疗仪器促进协会(AAMI)标准分类等问题,提出了一种基于原始一维心电信号并按照AAMI推荐标准类别进行心律失常自动分类的方法。该方法首先利用卷积神经网络(CNN)学习心电信号的形态特征,之后通过双向长短期记忆网络(BLSTM)获取特征中的上下文依赖关系,最后借助softmax函数完成分类任务。方法采用mish函数作为激活函数,使得模型在训练中更为稳定。在公开数据库MIT-BIH上进行五折交叉验证,评估结果达到了99.11%的平均准确率,表明该模型可以有效地提取心电信号的特征,适用于监测系统中心律失常疾病的诊断。

关键词: 心电信号, 心律失常, 卷积神经网络(CNN), 双向长短期记忆网络(BLSTM)

Abstract:

Arrhythmia is one of the common diseases in cardiovascular diseases. Automatic classification of arrhythmia is of great significance to the diagnosis and treatment of cardiovascular diseases. The arrhythmia classification method based on one-dimensional ECG signals takes several beats as input and extracts features from the model for classification. Aiming at the problems of high preprocessing cost and failure to classify according to AAMI (Association for the Advancement of Medical Instrumentation) recommended standards, a method for automatic classification of arrhythmias based on original one-dimensional ECG signals and according to AAMI recommended standards is proposed. This method first uses the convolutional neural network (CNN) to learn the morphological characteristics of the ECG signals, then obtains the context dependence of the characteristics through the bidirectional long short-term memory (BLSTM) network, and finally uses the softmax function to complete the classification task. The mish function is used as the activation function to make the model more stable in training. The five-folds cross-validation is carried out on MIT-BIH, and the evaluation results achieve an average accuracy of 99.11%, indicating that the model can effectively extract the characteristics of the ECG signal and is suitable for the diagnosis of arrhythmia in the monitoring system.

Key words: ECG, arrhythmia, convolutional neural network (CNN), bidirectional long short-term memory (BLSTM) network