[1] YU Z W, WONG H S, WANG H Q. Graph-based consensus clustering for class discovery from gene expression data[J]. Bioinformatics, 2007, 23(21): 2888-2896.
[2] YANG Y, JIANG J M. Hybrid sampling-based clustering ensemble with global and local constitutions[J]. IEEE Trans-actions on Neural Networks and Learning Systems, 2016, 27(5): 952-965.
[3] IAM-ON N, BOONGOEN T, GARRETT S. LCE: a link-based cluster ensemble method for improved gene expres-sion data analysis[J]. Bioinformatics, 2010, 26(12): 1513-1519.
[4] MINAEI-BIDGOLI B, TOPCHY A P, PUNCH W F. Ensem-bles of partitions via data resampling[C]//Proceedings of the 2004 International Conference on Information Technology: Coding and Computing, Las Vegas, Apr 5-7, 2004. Wash-ington: IEEE Computer Society, 2004: 188-192.
[5] HUANG D, WANG C D, WU J S, et al. Ultra-scalable spectral clustering and ensemble clustering[J]. IEEE Transactions on Knowledge & Data Engineering, 2020, 32(6): 1212-1226.
[6] FRED A L N, JAIN A K. Combining multiple clusterings using evidence accumulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850.
[7] STREHL A, GHOSH J. A knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learn-ing Research, 2003, 3(3): 583-617.
[8] MIMAROGLU S, ERDIL E. An efficient and scalable family of algorithms for combining clusterings[J]. Engineering Applications of Artificial Intelligence, 2013, 26(10): 2525-2539.
[9] HUANG D, WANG C D, LAI J H. Locally weighted ense-mble clustering[J]. IEEE Transactions on Cybernetics, 2017, 48(5): 1460-1473.
[10] HAN Z J. An adaptive K-means initialization method based on data density[J]. Computer Applications and Software, 2014, 31(2): 182-187.
韩最蛟. 基于数据密集性的自适应K均值初始化方法[J]. 计算机应用与软件, 2014, 31(2): 182-187.
[11] WANG X, YANG C, ZHOU J. Clustering aggregation by probability accumulation[J]. Pattern Recognition, 2009, 42(5): 668-675.
[12] TAO Z Q, LIU H F, LI S, et al. Robust spectral ensemble clustering via rank minimization[J]. ACM Transactions on Knowledge Discovery from Data, 2019, 13(1): 4.
[13] LIANG Y N, REN Z G, WU Z Z, et al. Scalable spectral ensemble clustering via building representative co-association matrix[J]. Neurocomputing, 2020, 390: 158-167.
[14] HUANG D, LAI J H, WANG C D. Robust ensemble clus-tering using probability trajectories[J]. IEEE Transactions on Knowledge & Data Engineering, 2016, 28(5): 1312-1326.
[15] HUANG D, WANG C D, PENG H X, et al. Enhanced en-semble clustering via fast propagation of cluster-wise simi-larities[J]. IEEE Transactions on Systems, Man, and Cyber-netics: Systems, 2021, 51(1): 508-520.
[16] IAM-ON N, BOONGOEN T, GARRETT S M. Refining pairwise similarity matrix for cluster ensemble problem with cluster relations[C]//LNCS 5255: Proceedings of the 11th International Conference on Discovery Science, Budapest, Oct 13-16, 2008. Berlin, Heidelberg: Springer, 2008: 222-233.
[17] GARRETT S. A link-based cluster ensemble method for im-proved gene expression data analysis[J]. Bioinformatics, 2010, 26(12): 1513-1519.
[18] HUANG D, LAI J H, WANG C D. Ensemble clustering using factor graph[J]. Pattern Recognition, 2016, 50(C): 131-142.
[19] CAI D, CHEN X L. Large scale spectral clustering via landmark-based sparse representation[J]. IEEE Transactions on Cyber-netics, 2015, 45(8): 1669-1680.
[20] HUANG F L, HUANG M X, YUAN C A, et al. Spectral clustering ensemble algorithm for discovering overlapping communities in social networks[J]. Control and Decision, 2014, 29(4): 713-718.
黄发良, 黄名选, 元昌安, 等. 网络重叠社区发现的谱聚类集成算法[J]. 控制与决策, 2014, 29(4): 713-718.
[21] BACHEM O, LUCIC M, HASSANI S H, et al. Fast and provably good seedings for k-means[C]//Proceedings of the Annual Conference on Neural Information Processing Sys-tems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Assoc-iates, 2016: 55-63.
[22] HONG M, JIA C Y, WANG X Y. Research on initialization of K-means type multi-view clustering[J]. Journal of Fron-tiers of Computer Science and Technology, 2019, 13(4): 574-585.
洪敏, 贾彩燕, 王晓阳. K-means型多视图聚类中的初始化问题研究[J]. 计算机科学与探索, 2019, 13(4): 574-585.
[23] ZHANG N N, GE H W. Stable K multiple-means clustering algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 941-948.
张倪妮, 葛洪伟. 稳定的K-多均值聚类算法[J]. 计算机科学与探索, 2021, 15(5): 941-948.
[24] KUNCHEVA L I, HADJITODOROV S T. Using diversity in cluster ensembles[C]//Proceedings of the 2004 IEEE In-ternational Conference on Systems, Man and Cybernetics, The Hague, Oct 10-13, 2004. Piscataway: IEEE, 2004: 1214-1219.
[25] HONG M, JIA C Y, LI Y F, et al. Sample-weighted multi-view clustering[J]. Journal of Computer Research and Deve-lopment, 2019, 56(8): 1677-1685.
洪敏, 贾彩燕, 李亚芳, 等. 样本加权的多视图聚类算法[J]. 计算机研究与发展, 2019, 56(8): 1677-1685.
[26] NAVARRO J F, FRENK C S, WHITE S D M. A universal density profile from hierarchical clustering[J]. Astrophysical Journal, 1996, 490(2): 493. |