[1] ILESANMI A E, ILESANMI T O. Methods for image de-noising using convolutional neural network: a review[J]. Complex & Intelligent Systems, 2021, 7: 2179-2198.
[2] NADEEM M, HUSSAIN A, MUNIR A, et al. Removal of random valued impulse noise from grayscale images using quadrant based spatially adaptive fuzzy filter[J]. Signal Processing, 2020, 169: 107403.
[3] DONG Y, CHAN R H, XU S. A detection statistic for random-valued impulse noise[J]. IEEE Transactions on Image Pro-cessing, 2007, 16(4): 1112-1120.
[4] LYU Q, GUO M, PEI Z. DeGAN: mixed noise removal via generative adversarial networks[J]. Applied Soft Compu-ting, 2020, 95: 106478.
[5] CHAN R H, HU C, NIKOLOVA M. An iterative procedure for removing random-valued impulse noise[J]. IEEE Signal Processing Letters, 2004, 11(12): 921-924.
[6] KIM S. PDE-based image restoration: a hybrid model and color image denoising[J]. IEEE Transactions on Image Pro-cessing, 2006, 15(5): 1163-1170.
[7] BROOK A. Three-dimensional wavelets-based denoising of hyperspectral imagery[J]. Journal of Electronic Imaging, 2015, 24(1): 013034.
[8] ASTOLA J, HAAVISTO P, NEUVO Y. Vector median filters[J]. Proceedings of the IEEE, 1990, 78(4): 678-689.
[9] TRAHANIAS P E, VENETSANOPOULOS A N. Vector direc-tional filters—a new class of multichannel image proces-sing filters[J]. IEEE Transactions on Image Processing, 1993, 2(4): 528-534.
[10] KARAKOS D G, TRAHANIAS P E. Generalized multichannel image-filtering structures[J]. IEEE Transactions on Image Processing, 1997, 6(7): 1038-1045.
[11] SMOLKA B, CHYDZINSKI A. Fast detection and impul-sive noise removal in color images[J]. Real-Time Imaging, 2005, 11(5/6): 389-402.
[12] CELEBI M E, ASLANDOGAN Y A. Robust switching vec-tor median filter for impulsive noise removal[J]. Journal of Electronic Imaging, 2008, 17(4): 043006.
[13] XU J, WANG L, SHI Z. A switching weighted vector me-dian filter based on edge detection[J]. Signal Processing, 2014, 98: 359-369.
[14] ROY A, LASKAR R H. Impulse noise removal based on SVM classification[C]//Proceedings of the IEEE Region 10 International Conference TENCON, Macao, China, Nov 1-4, 2015. Piscataway: IEEE, 2015: 1-5.
[15] SA P K, MAJHI B. An improved adaptive impulsive noise sup-pression scheme for digital images[J]. AEU-International Journal of Electronics and Communications, 2010, 64(4): 322-328.
[16] TURKMEN I. The ANN based detector to remove ran-domvalued impulse noise in images[J]. Journal of Visual Communication and Image Representation, 2016, 34: 28-36.
[17] ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian de-noiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
[18] ZHANG K, ZUO W, ZHANG L. FFDNet: toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Tran-sactions on Image Processing, 2018, 27(9): 4608-4622.
[19] LEFKIMMIATIS S. Universal denoising networks: a novel CNN architecture for image denoising[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 3204-3213.
[20] CHEN J, CHEN J, CHAO H, et al. Image blind denoising with generative adversarial network based noise modeling[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 3155-3164.
[21] RADLAK K, MALINSKI L, SMOLKA B. Deep learning for impulsive noise removal in color digital images[C]//Pro-ceedings of the Real-Time Image Processing and Deep Lear-ning 2019, Baltimore, May 14, 2019. Bellingham: SPIE, 2019: 1099608.
[22] RADLAK K, MALINSKI L, SMOLKA B. Deep learning based switching filter for impulsive noise removal in color images[J]. Sensors, 2020, 20(10): 2782.
[23] ZHANG W, JIN L, SONG E, et al. Removal of impulse noise in color images based on convolutional neural network[J]. Applied Soft Computing, 2019, 82: 105558.
[24] ZHANG Y, TIAN Y, KONG Y, et al. Residual dense net-work for image super-resolution[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recogni-tion, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Com-puter Society, 2018: 2472-2481.
[25] TIAN C, XU Y, LI Z, et al. Attention-guided CNN for image denoising[J]. Neural Networks, 2020, 124: 117-129.
[26] GENG X, HU X, XIAO J. Quaternion switching filter for impulse noise reduction in color image[J]. Signal Proces-sing, 2012, 92(1): 150-162.
[27] WANG G, LIU Y, ZHAO T. A quaternion-based switching filter for colour image denoising[J]. Signal Processing, 2014, 102: 216-225.
[28] JIN L, ZHU Z, SONG E, et al. An effective vector filter for impulse noise reduction based on adaptive quaternion color distance mechanism[J]. Signal Processing, 2019, 155: 334-345.
[29] HAMILTON W R. Elements of quaternions[M]. New York: Cambridge University Press, 1866.
[30] ZHU X Y, XU Y, XU H T, et al. Quaternion convolutional neural networks[C]//LNCS 11212: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 645-661.
[31] LIU R, SHEN J, WANG H, et al. Enhanced 3D human pose estimation from videos by using attention-based neural net-work with dilated convolutions[J]. International Journal of Computer Vision, 2021, 129(5): 1596-1615.
[32] ARBELAEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(5): 898-916.
[33] FRANZEN R. Kodak lossless true color image suite[EB/OL]. [2021-07-21]. http://r0k.us/graphics/kodak.
[34] LI X, GUNTURK B, ZHANG L. Image demosaicing: a systematic survey[C]//Proceedings of the Visual Commu-nications and Image Processing 2008, San Jose, Jan 28, 2008. San Francisco: SPIE, 2008: 68221J.
[35] XU J, LI H, LIANG Z, et al. Real-world noisy image de-noising: a new benchmark[J]. arXiv:1804.02603, 2018.
[36] MA Z, WU H R, QIU B. A robust structure-adaptive hybrid vector filter for color image restoration[J]. IEEE Transac-tions on Image Processing, 2005, 14(12): 1990-2001.
[37] LUKAC R, PLATANIOTIS K N. A taxonomy of color image filtering and enhancement solutions[J]. Advances in Im-aging and Electron Physics, 2006, 140: 188.
[38] ZHANG L, ZHANG L, MOU X, et al. FSIM: a feature simi-larity index for image quality assessment[J]. IEEE Transac-tions on Image Processing, 2011, 20(8): 2378-2386.
[39] ZHONG L, IBRAHIM M T, ZHANG Y, et al. Hybrid vector filters based on marginal ordering for impulsive noise suppres-sion in color images[J]. Journal of Signal Processing Systems, 2017, 89(2): 379-394.
[40] YUAN G, GHANEM B. L0TV: a new method for image res-toration in the presence of impulse noise[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington:IEEE Computer Society, 2015: 5369-5377.
[41] JIN L, LIU H, XU X, et al. Color impulsive noise removal based on quaternion representation and directional vector order-statistics[J]. Signal Processing, 2011, 91(5): 1249-1261.
[42] JIN L, ZHU Z, XU X, et al. Two-stage quaternion switching vector filter for color impulse noise removal[J]. Signal Pro-cessing, 2016, 128: 171-185.
[43] ZHU Z, JIN L, SONG E, et al. Quaternion switching vector median filter based on local reachability density[J]. IEEE Signal Processing Letters, 2018, 25(6): 843-847. |