计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (7): 1506-1525.DOI: 10.3778/j.issn.1673-9418.2210056
吴水秀,罗贤增,熊键,钟茂生,王明文
出版日期:
2023-07-01
发布日期:
2023-07-01
WU Shuixiu, LUO Xianzeng, XIONG Jian, ZHONG Maosheng, WANG Mingwen
Online:
2023-07-01
Published:
2023-07-01
摘要: 知识追踪,旨在根据学生的历史答题记录,对学生随学习时间不断变化的知识状态进行建模,进而预测学生的答题表现,是支撑智慧教育系统的核心模块,受到越来越多研究者的关注。全面梳理了该领域的研究进展,分析了与知识追踪相关的基础理论研究,并按照研究方法的不同,将知识追踪模型分为概率模型、逻辑模型、基于深度学习的模型进行剖析,其中概率模型假设学习遵循马尔可夫过程,逻辑模型是一类基于逻辑函数的模型,而基于深度学习的知识追踪模型依赖于深度学习强大的特征提取能力成为近年来研究的热点。对基于深度学习的知识追踪模型面临的可解释性、缺少学习特征等问题提出的改进方法进行了介绍。给出了目前可供研究者们使用的公共数据集以及不同模型的性能比较。最后,对知识追踪这个快速发展起来的领域进行了总结,针对该领域研究存在的问题,提出了一些未来可能的研究方向。
吴水秀, 罗贤增, 熊键, 钟茂生, 王明文. 知识追踪研究综述[J]. 计算机科学与探索, 2023, 17(7): 1506-1525.
WU Shuixiu, LUO Xianzeng, XIONG Jian, ZHONG Maosheng, WANG Mingwen. Review on Research of Knowledge Tracking[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1506-1525.
[1] DARADOUMIS T, BASSI R, XHAFA F, et al. A review on massive e-learning (MOOC) design, delivery and assess-ment[C]//Proceedings of the 8th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Compiegne, Oct 28-30, 2013. Piscataway: IEEE, 2013: 208-213. [2] ADAMOPOULOS P. What makes a great MOOC? An inter-disciplinary analysis of student retention in online courses[C]//Proceedings of the 2013 International Conference on Information Systems, Milano, Dec 15-18, 2013: 4720-4740. [3] CORBETT A T, ANDERSON J R. Knowledge tracing: mo-deling the acquisition of procedural knowledge[J]. User Modeling and User-Adapted Interaction, 1995, 4(4): 253-278. [4] EMBRETSON S E, REISE S P. Item response theory[M]. Bris-tol: Taylor & Francis, 2013. [5] CEN H. Generalized learning factors analysis: improving cog-nitive models with machine learning[D]. Carnegie Mellon University, 2009. [6] PAVLIK P I, CEN H, KOEDINGER K R. Performance fac-tors analysis—a new alternative to knowledge tracing[J]. Frontiers in Artificial Intelligence and Applications, 2009, 200(1): 531-538. [7] PIECH C, SPENCER J, HUANG J, et al. Deep knowledge tracing[J]. arXiv:1506.05908, 2015. [8] PANDEY S, KARYPIS G. A self-attentive model for know-ledge tracing[C]//Proceedings of the 12th International Con-ference on Educational Data Mining, Montréal, Jul 2-5, 2019: 1-4. [9] CHOI Y, LEE Y, CHO J, et al. Towards an appropriate query, key, and value computation for knowledge tracing[C]//Pro-ceedings of the 7th ACM Conference on Learning@Scale, Aug 12-14, 2020. New York: ACM, 2020: 341-344. [10] PU S, YUDELSON M, OU L, et al. Deep knowledge tracing with transformers[C]//LNCS 12164: Proceedings of the 21st International Conference on Artificial Intelligence in Education, Ifrane, Jul 6-10, 2020. Cham: Springer, 2020: 252-256. [11] NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3101-3107. [12] CHENG S, LIU Q, CHEN E H. Domain adaption for know-ledge tracing[J]. arXiv:2001.04841, 2020. [13] GAN W B, SUN Y, PENG X, et al. Modeling learner’s dyna-mic knowledge construction procedure and cognitive item difficulty for knowledge tracing[J]. Applied Intelligence, 2020, 50(11): 3894-3912. [14] WILSON K H, XIONG X L, KHAJAH M, et al. Estimating student proficiency: deep learning is not the panacea[C]//Proceedings of the 30th Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2016: 1-8. [15] DOLECK T, LEMAY D J, BASNET R B, et al. Predictive analytics in education: a comparison of deep learning frame-works[J]. Education and Information Technologies, 2020, 25(3): 1951-1963. [16] ZHU Z T, SHEN D M. New paradigm of educational techno-logy research based on big data[J]. E-education Research, 2013, 10: 5-13. [17] WEISS D J, KINGSBURY G G. Application of computeri-zed adaptive testing to educational problems[J]. Journal of Educational Measurement, 1984, 21(4): 361-375. [18] LEARNING K A. Building the world’s most powerful education recommendation engine[R]. 2012: 1-15. [19] GREEN-LERMAN H. Visualizing personalized learning[EB/OL]. [2022-07-28]. https://www.knewton.com/resources/blog/adaptive-learning/visualizing-personalized-learning. [20] LIU Y P, LIU Q, WU R Z, et al. Collaborative learning team formation: a cognitive modeling perspective[C]//LNCS 9643: Proceedings of the 21st International Conference on Database Systems for Advanced Applications, Dallas, Apr 16-19, 2016. Cham: Springer, 2016: 383-400. [21] HUANG Z, LIU Q, ZHAI C, et al. Exploring multi-objective exercise recommendations in online education systems[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 1261-1270. [22] 朱天宇. 结合认知诊断的方法的学生建模与应用研究 [D]. 合肥: 中国科学技术大学, 2018. ZHU T Y. Student modeling and application research com-bined with cognitive diagnostic methods[D]. Hefei: Univer-sity of Science and Technology of China, 2018. [23] LEIGHTON J P, GIERL M J. Cognitive diagnostic assess-ment for education: theory and applications[M]. New York:Cambridge University Press, 2007. [24] REISE S P. Item response theory[M]//The Encyclopedia of Clinical Psychology. Hoboken: John Wiley & Sons, Ltd., 2014: 1-10. [25] JUNKER B W, SIJTSMA K. Cognitive assessment models with few assumptions, and connections with nonparametric item response theory[J]. Applied Psychological Measure-ment, 2001, 25(3): 258-272. [26] DIBELLO L V, ROUSSOS L A, STOUT W. Review of cogni-tively diagnostic assessment and a summary of psychome-tric models[J].?Handbook of Statistics, 2006, 26: 979-1030. [27] TATSUOKA K K. Rule space: an approach for dealing with misconceptions based on item response theory[J]. Journal of Educational Measurement, 1983, 20(4): 345-354. [28] XIAO Z, RUXUE S. Research advance in DINA model of cognitive diagnosis[J]. China Examinations, 2013, 1: 32-37. [29] ZHANG K, YAO Y. A three learning states Bayesian know-ledge tracing model[J]. Knowledge-Based Systems, 2018, 148: 189-201. [30] ZHU J, ZANG Y, QIU H, et al. Integrating temporal infor-mation into knowledge tracing: a temporal difference app-roach[J]. IEEE Access, 2018, 6: 27302-27312. [31] HUANG X Q, LIU Q, WANG C, et al. Constructing educa-tional concept maps with multiple relationships from multi-source data[C]//Proceedings of the 2019 IEEE International Conference on Data Mining, Beijing, Nov 8-11, 2019. Pisca-taway: IEEE, 2019: 1108-1113. [32] K?SER T, KLINGLER S, SCHWING A G, et al. Dynamic Bayesian networks for student modeling[J]. IEEE Transac-tions on Learning Technologies, 2017, 10(4): 450-462. [33] LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Con-ditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning, Williams-town, Jun 28-Jul 1, 2001. San Mateo: Morgan Kaufmann, 2001: 282-289. [34] SCHWING A, HAZAN T, POLLEFEYS M, et al. Efficient structured prediction with latent variables for general graphical models[J]. arXiv:1206.6436, 2012. [35] XU Y B, MOSTOW J. Using logistic regression to trace multiple sub-skills in a dynamic Bayes net[C]//Proceedings of the 4th International Conference on Educational Data Mining, Eindhoven, Jul 6-8, 2011: 241-246. [36] HAWKINS W J, HEFFERNAN N T, BAKER R S J D. Learning Bayesian knowledge tracing parameters with a knowledge heuristic and empirical probabilities[C]//LNCS 8474: Proceedings of the 12th International Conference on Intelligent Tutoring Systems, Honolulu, Jun 5-9, 2014. Cham: Springer, 2014: 150-155. [37] YUDELSON M V, KOEDINGER K R, GORDON G J. Indi-vidualized Bayesian knowledge tracing models[C]//LNCS 7926: Proceedings of the 16th International Conference on Artificial Intelligence in Education, Memphis, Jul 9-13, 2013. Berlin, Heidelberg: Springer, 2013: 171-180. [38] BAKER R S J D, YACEF K. The state of educational data mining in 2009: a review and future visions[J]. Journal of Educational Data Mining, 2009, 1(1): 3-17. [39] PARDOS Z A, HEFFERNAN N T. KT-IDEM: introducing item difficulty to the knowledge tracing model[C]//Procee-dings of the 2011 International Conference on User Mode-ling, Adaptation, and Personalization, Jul 11-15, 2011. Berlin, Heidelberg: Springer, 2011: 243-254. [40] THAI-NGHE N, HORVáTH T, SCHMIDT-THIEME L. Factorization models for forecasting student performance[C]//Proceedings of the 4th International Conference on Educational Data Mining, Eindhoven, Jul 6-8, 2011: 11-20. [41] EBBINGHAUS H. Memory: a contribution to experimental psychology[J]. Annals of Neurosciences, 2013, 20(4): 155. [42] PELáNEK R. Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques[J]. User Modeling and User-Adapted Interaction, 2017, 27(3): 313-350. [43] CHI M, KOEDINGER K R, GORDON G J, et al. Instruc-tional factors analysis: a cognitive model for multiple instruc-tional interventions[C]//Proceedings of the 4th International Conference on Educational Data Mining, Eindhoven, Jul 6-8, 2011. [44] HUANG Y, GONZáLEZ-BRENES J, BRUSILOVSKY P. General features in knowledge tracing to model multiple sub-skills, temporal item response theory, and expert knowledge[C]//Proceedings of the 7th International Conference on Educational Data Mining, London, Jul 4-7, 2014: 84-91. [45] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum like-lihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Metho-dological), 1977, 39(1): 1-22. [46] GRAVES A, MOHAMED A, HINTON G. Speech recogni-tion with deep recurrent neural networks[C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, May 26-31, 2013. Piscataway: IEEE, 2013: 6645-6649. [47] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25, Lake Tahoe, Dec 3-6, 2012. [48] HU Z, ZHANG Z, YANG H, et al. A deep learning approach for predicting the quality of online health expert question-answering services[J]. Journal of Biomedical Informatics, 2017, 71: 241-253. [49] VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: lessons learned from the 2015 MSCOCO image captioning challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(4): 652-663. [50] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489. [51] WILLIAMS R J, ZIPSER D. A learning algorithm for con-tinually running fully recurrent neural networks[J]. Neural Computation, 1989, 1(2): 270-280. [52] LIU D R, CHUANG S P, LEE H. Attention-based memory selection recurrent network for language modeling[J]. arXiv:1611.08656, 2016. [53] WESTON J, BORDES A, CHOPRA S, et al. Towards AI-complete question answering: a set of prerequisite toy tasks[J]. arXiv:1502.05698, 2015. [54] CANDES E J, WAKIN M B. An introduction to compres-sive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. [55] XIONG X L, ZHAO S Y, VAN INWEGEN E G, et al. Going deeper with deep knowledge tracing[C]//Proceedings of the 9th International Conference on Educational Data Mining, Raleigh, Jun 29-Jul 2, 2016: 545-550. [56] YEUNG C K, YEUNG D Y. Addressing two problems in deep knowledge tracing via prediction-consistent regulariza-tion[C]//Proceedings of the 5th Annual ACM Conference on Learning at Scale, London, Jun 26-28, 2018. New York: ACM, 2018: 1-10. [57] WANG T Q, MA F L, GAO J. Deep hierarchical knowledge tracing[C]//Proceedings of the 12th International Conference on Educational Data Mining, Montréal, Jul 2-5, 2019: 671-674. [58] HOCHREITER S, SCHMIDHUBER J. Long short-term me-mory[J]. Neural Computation, 1997, 9(8): 1735-1780. [59] ZHANG J N, SHI X J, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 765-774. [60] WESTON J, CHOPRA S, BORDES A. Memory networks[J]. arXiv:1410.3916, 2014. [61] SANTORO A, BARTUNOV S, BOTVINICK M M, et al. Meta-learning with memory-augmented neural networks[C]//Pro-ceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 1842-1850. [62] GRAVES A, WAYNE G, DANIHELKA I. Neural turing machines[J]. arXiv:1410.5401, 2014. [63] AI F Z, CHEN Y C, GUO Y C, et al. Concept-aware deep knowledge tracing and exercise recommendation in an online learning system[C]//Proceedings of the 12th International Conference on Educational Data Mining, Montréal, Jul 2-5, 2019: 1-6. [64] NAKAGAWA H, IWASAWA Y, MATSUO Y. Graph-based knowledge tracing: modeling student proficiency using graph neural network[C]//Proceedings of the 2019 IEEE/WIC/ACM International Conference on Web Intelligence, Thessaloniki, Oct 14-17, 2019. New York: ACM, 2019: 156-163. [65] GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, Montreal, Jul 31-Aug 4, 2005. Piscataway: IEEE, 2005: 729-734. [66] GARDNER M W, DORLING S R. Artificial neural net-works (the multilayer perceptron)—a review of applica-tions in the atmospheric sciences[J]. Atmospheric Environ-ment, 1998, 32(14/15): 2627-2636. [67] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv:1412.3555, 2014. [68] TONG H, WANG Z, LIU Q, et al. HGKT: introducing hierarchical exercise graph for knowledge tracing[J]. arXiv:2006.16915, 2020. [69] JOHNSON S C. Hierarchical clustering schemes[J]. Psycho-metrika, 1967, 32(3): 241-254. [70] SONG X, LI J, TANG Y, et al. JKT: a joint graph convo-lutional network based deep knowledge tracing[J]. Informa-tion Sciences, 2021, 580: 510-523. [71] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. [72] DE BODT C, MULDERS D, VERLEYSEN M, et al. Non-linear dimensionality reduction with missing data using parametric multiple imputations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(4): 1166-1179. [73] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013. [74] SU Y, LIU Q W, LIU Q, et al. Exercise-enhanced sequential modeling for student performance prediction[C]//Procee-dings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 2435-2443. [75] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient esti-mation of word representations in vector space[J]. arXiv:1301.3781, 2013. [76] LIU Q, HUANG Z, YIN Y, et al. EKT: exercise-aware know-ledge tracing for student performance prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(1): 100-115. [77] LIU Y, YANG Y, CHEN X, et al. Improving knowledge tracing via pre-training question embeddings[J]. arXiv:2012.05031, 2020. [78] ZHANG M, ZHU X, ZHANG C, et al. Multi-factors aware dual-attentional knowledge tracing[C]//Proceedings of the 30th ACM International Conference on Information & Know-ledge Management, Queensland, Nov 1-5, 2021. New York:ACM, 2021: 2588-2597. [79] LIU Y, YANG Y, CHEN X, et al. Improving knowledge tra-cing via pre-training question embeddings[J]. arXiv:2012.05031, 2020. [80] YANG Y, SHEN J, QU Y, et al. GIKT: a graph-based interac-tion model for knowledge tracing[J]. arXiv:2009.05991, 2020. [81] PANDEY S, SRIVASTAVA J. RKT: relation-aware self-attention for knowledge tracing[C]//Proceedings of the 29th ACM International Conference on Information & Know-ledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 1205-1214. [82] ARORA S, LIANG Y Y, MA T Y. A simple but tough-to-beat baseline for sentence embeddings[C]//Proceedings of the 5th International Conference on Learning Representa-tions, Toulon, Apr 24-26, 2017. [83] PEARSON K. Contributions to the mathematical theory of evolution. III. regression, heredity, and panmixia[J]. Procee-dings of the Royal Society of London, 1895, 59(1): 69-71. [84] SHEN S, LIU Q, CHEN E, et al. Learning process-consistent knowledge tracing[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Singapore, Aug 14-18, 2021. New York: ACM, 2021: 1452-1460. [85] FRIEDL M A, BRODLEY C E. Decision tree classification of land cover from remotely sensed data[J]. Remote Sensing of Environment, 1997, 61(3): 399-409. [86] MINN S, YU Y, DESMARAIS M C, et al. Deep knowledge tracing and dynamic student classification for knowledge tracing[C]//Proceedings of the 2018 IEEE International Conference on Data Mining, Singapore, Nov 17-20, 2018. Washington: IEEE Computer Society, 2018: 1182-1187. [87] KRISHNA K, MURTY M N. Genetic K-means algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29(3): 433-439. [88] SUN X, ZHAO X, LI B, et al. Dynamic key-value memory networks with rich features for knowledge tracing[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8239-8245. [89] EBBINGHAUS H. Memory: a contribution to experimental psychology[J]. Annals of Neurosciences, 2013, 20(4): 155. [90] NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3101-3107. [91] GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 23-27, 2020. New York: ACM, 2020: 2330-2339. [92] LIU S, ZOU R, SUN J, et al. A hierarchical memory net-work for knowledge tracing[J]. Expert Systems with App-lications, 2021, 177: 114935. [93] KASURINEN J, NIKULA U. Estimating programming know-ledge with Bayesian knowledge tracing[J]. ACM SIGCSE Bulletin, 2009, 41(3): 313-317. [94] SCHODDE T, BERGMANN K, KOPP S. Adaptive robot language tutoring based on Bayesian knowledge tracing and predictive decision-making[C]//Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Inter-action, Vienna, Mar 6-9, 2017. New York: ACM, 2017: 128-136. [95] 姜智. 知识点关系、知识点结构图与知识点网络的应用研究[J]. 鞍山师范学院学报, 2005, 7(5): 99-101. JIANG Z. The application study of knowledge point relation and its structure diagram and knowledge network[J]. Journal of Anshan Normal University, 2005, 7(5): 99-101. [96] 谈成群. 知识组件与知识空间及其应用初探[D]. 湘潭: 湘潭大学, 2007. TAN C Q. Knowledge component and knowledge space and its application[D]. Xiangtan: Xiangtan University, 2007. [97] LIU D, DAI H, ZHANG Y, et al. Deep knowledge tracking based on attention mechanism for student performance prediction[C]//Proceedings of the 2020 IEEE 2nd Interna-tional Conference on Computer Science and Educational Informatization, Xinxiang, Jun 12-14, 2020. Piscataway: IEEE, 2020: 95-98. [98] YEUNG C K. Deep-IRT: make deep learning based know-ledge tracing explainable using item response theory[J]. arXiv:1904.11738, 2019. [99] LIU D, ZHANG Y, ZHANG J, et al. Multiple features fusion attention mechanism enhanced deep knowledge tracing for student performance prediction[J]. IEEE Access, 2020, 8: 194894-194903. [100] WILSON K H, XIONG X, KHAJAH M, et al. Estimating student proficiency: deep learning is not the panacea[C]//Advances in Neural Information Processing Systems 29, Barcelona, Dec 5-10, 2016: 3. [101] RESNICK M, MALONEY J, MONROY-HERNáNDEZ A, et al. Scratch: programming for all[J]. Communications of the ACM, 2009, 52(11): 60-67. [102] AIVALOGLOU E, HERMANS F, MORENO-LEóN J, et al. A dataset of scratch programs: scraped, shaped and scored[C]//Proceedings of the 2017 IEEE/ACM 14th In-ternational Conference on Mining Software Repositories, Buenos Aires, May 20-21, 2017. Piscataway: IEEE, 2017: 511-514. [103] NUSSEY I D, NORTON M L. An introduction to infor-mation and communication theory[J]. Production Engi-neer, 1975, 54(12): 647. [104] FEI M, YEUNG D Y. Temporal models for predicting student dropout in massive open online courses[C]//Pro-ceedings of the 2015 IEEE International Conference on Data Mining, Atlantic City, Nov 14-17, 2015. Washing-ton: IEEE Computer Society, 2015: 256-263. [105] ZIMMERMAN B J. Self-regulated learning and academic achievement: an overview[J]. Educational Psychologist, 1990, 25(1): 3-17. [106] HUANG Z, LIU Q, ZHAI C, et al. Exploring multi-objective exercise recommendations in online education systems[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 1261-1270. |
[1] | 徐光宪, 冯春, 马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792. |
[2] | 季长清, 王兵兵, 秦静, 汪祖民. 深度特征的实例图像检索算法综述[J]. 计算机科学与探索, 2023, 17(7): 1565-1575. |
[3] | 马妍, 古丽米拉·克孜尔别克. 图像语义分割方法在高分辨率遥感影像解译中的研究综述[J]. 计算机科学与探索, 2023, 17(7): 1526-1548. |
[4] | 张如琳, 王海龙, 柳林, 裴冬梅. 音乐自动标注分类方法研究综述[J]. 计算机科学与探索, 2023, 17(6): 1225-1248. |
[5] | 梁宏涛, 刘硕, 杜军威, 胡强, 于旭. 深度学习应用于时序预测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1285-1300. |
[6] | 曹义亲, 饶哲初, 朱志亮, 万穗. 双通道四元数卷积网络去噪方法[J]. 计算机科学与探索, 2023, 17(6): 1359-1372. |
[7] | 曹斯铭, 王晓华, 王弘堃, 曹轶. MSV-Net:面向科学模拟面体混合数据的超分重建方法[J]. 计算机科学与探索, 2023, 17(6): 1321-1328. |
[8] | 刘京, 赵薇, 董泽浩, 王少华, 王余. 融合多尺度自注意力机制的运动想象信号解析[J]. 计算机科学与探索, 2023, 17(6): 1427-1440. |
[9] | 黄涛, 李华, 周桂, 李少波, 王阳. 实例分割方法研究综述[J]. 计算机科学与探索, 2023, 17(4): 810-825. |
[10] | 安胜彪, 郭昱岐, 白 宇, 王腾博. 小样本图像分类研究综述[J]. 计算机科学与探索, 2023, 17(3): 511-532. |
[11] | 焦磊, 云静, 刘利民, 郑博飞, 袁静姝. 封闭域深度学习事件抽取方法研究综述[J]. 计算机科学与探索, 2023, 17(3): 533-548. |
[12] | 周燕, 韦勤彬, 廖俊玮, 曾凡智, 冯文婕, 刘翔宇, 周月霞. 自然场景文本检测与端到端识别:深度学习方法[J]. 计算机科学与探索, 2023, 17(3): 577-594. |
[13] | 王文森, 黄凤荣, 王旭, 刘庆璘, 羿博珩. 基于深度学习的视觉惯性里程计技术综述[J]. 计算机科学与探索, 2023, 17(3): 549-560. |
[14] | 周晶雨, 王士同. 对不平衡数据的多源在线迁移学习算法[J]. 计算机科学与探索, 2023, 17(3): 687-700. |
[15] | 王燕, 吕艳萍. 混合深度CNN联合注意力的高光谱图像分类[J]. 计算机科学与探索, 2023, 17(2): 385-395. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||