[1] WILSON R S, SEGAWA E, BOYLE P A, et al. The natural history of cognitive decline in Alzheimer??s disease[J]. Psy-chology and Aging, 2012, 27(4): 1008-1017.
[2] PATTERSON C. World Alzheimer report 2018: the state of the dementia research: new frontiers[R]. London, 2018.
[3] ASSOCIATION A S. 2018 Alzheimer??s disease facts and figures[J]. Alzheimers Dement, 2018, 14(3): 367-429.
[4] BRON E E, SMITS M, NIESSEN W J, et al. Feature selec-tion based on the SVM weight vector for classification of dementia[J]. IEEE Journal of Biomedical and Health Infor-matics, 2015, 19(5): 1617-1626.
[5] BI X A, HU X, WU H, et al. Multimodal data analysis of Alzheimer??s disease based on clustering evolutionary ran-dom forest[J]. IEEE Journal of Biomedical and Health In-formatics, 2020, 24(10): 2973-2983.
[6] HUANG Y, XU J, ZHOU Y, et al. Diagnosis of Alzheimer??s disease via multi-modality 3D convolutional neural network[J]. Frontiers in Neuroscience, 2019, 13: 509.
[7] HONG X, LIN R, YANG C, et al. Predicting Alzheimer??s disease using LSTM[J]. IEEE Access, 2019, 7: 80893-80901.
[8] FENG C, ELAZAB A, YANG P, et al. Deep learning frame-work for Alzheimer??s disease diagnosis via 3D-CNN and FSBi-LSTM[J]. IEEE Access, 2019, 7: 63605-63618.
[9] KAM T E, ZHANG H, JIAO Z, et al. Deep learning of static and dynamic brain functional networks for early MCI detec-tion[J]. IEEE Transactions on Medical Imaging, 2020, 39(2): 478-487.
[10] PAN X, PHAN T L, ADEL M, et al. Multi-view separable pyramid network for AD prediction at MCI stage by 18F-FDG brain PET imaging[J]. IEEE Transactions on Medical Imaging, 2021, 40(1): 81-92.
[11] LIU M, CHENG D, WANG K, et al. Multi-modality cas-caded convolutional neural networks for Alzheimer??s disease diagnosis[J]. Neuroinformatics, 2018, 16(3/4): 295-308.
[12] JIE B, ZHANG D, CHENG B, et al. Manifold regularized multitask feature learning for multimodality disease classi-fication[J]. Human Brain Mapping, 2015, 36(2): 489-507.
[13] 彭瑶, 祖辰, 张道强. 基于超图的多模态特征选择算法及其应用[J]. 计算机科学与探索, 2018, 12(1): 112-119.
PENG Y, ZU C, ZHANG D Q. Hypergraph based multi-modal feature selection and its application[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(1): 112-119.
[14] SHAO W, PENG Y, ZU C, et al. Hypergraph based multi-task feature selection for multimodal classification of Al-zheimer??s disease[J]. Computerized Medical Imaging and Graphics, 2020, 80: 101663.
[15] DENG Z, CHOI K S, JIANG Y, et al. Generalized hidden-mapping ridge regression, knowledge-leveraged inductive transfer learning for neural networks, fuzzy systems and kernel methods[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2585-2599.
[16] JIANG Y, DENG Z, CHUNG F L, et al. Recognition of epileptic EEG signals using a novel multiview TSK fuzzy system[J]. IEEE Transactions on Fuzzy Systems, 2016, 25(1): 3-20.
[17] ZADEH A, CHEN M, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[J]. arXiv:1707.07250, 2017.
[18] LIU Z, SHEN Y, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[J].arXiv:1806.00064, 2018.
[19] FENG Y F, YOU H X, ZHANG Z H, et al. Hypergraph neural networks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Sym-posium on Educational Advances in Artificial Intelligence,Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 3558-3565.
[20] ZHANG D, WANG Y, ZHOU L, et al. Multimodal classi-fication of Alzheimer??s disease and mild cognitive impair-ment[J]. NeuroImage, 2011, 55(3): 856-867.
[21] 程波, 朱丙丽, 熊江. 基于多模态多标记迁移学习的早期阿尔茨海默病诊断[J]. 计算机应用, 2016, 36(8): 2282-2286.
CHENG B, ZHU B L, XIONG J. Multimodal multi-label transfer learning for early diagnosis of Alzheimer??s disease [J]. Journal of Computer Applications, 2016, 36(8): 2282-2286.
[22] SUK H I, LEE S W, SHEN D, et al. Deep sparse multi-task learning for feature selection in Alzheimer??s disease diag-nosis[J]. Brain Structure and Function, 2016, 221(5): 2569-2587.
[23] TONG T, GRAY K, GAO Q, et al. Multi-modal classifica-tion of Alzheimer??s disease using nonlinear graph fusion[J]. Pattern Recognition, 2017, 63: 171-181. |