[1] YANG F, WANG S, LI J, et al. An overview of internet of vehicles[J]. China communications, 2014, 11(10): 1-15.
[2] KAIWARTYA O, ABDULLAH A H, CAO Y, et al. Internet of vehicles: motivation, layered architecture, network model, challenges, and future aspects[J]. IEEE Access, 2016, 4: 5356-5373.
[3] YANG Z, YANG K, LEI L, et al. Blockchain-based decen-tralized trust management in vehicular networks[J]. IEEE Internet of Things Journal, 2018, 6(2): 1495-1505.
[4] NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash sys-tem[J]. Decentralized Business Review, 2008: 21260.
[5] YU F R. vDLT: a service-oriented blockchain system with virtualization and decoupled management/control and exec-ution[J]. arXiv:1809.00290, 2018.
[6] LIU M, YU F R, TENG Y, et al. Performance optimization for blockchain-enabled industrial Internet of Things (IIoT) systems: a deep reinforcement learning approach[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3559-3570.
[7] 喻辉, 张宗洋, 刘建伟. 比特币区块链扩容技术研究[J]. 计算机研究与发展, 2017, 54(10): 2390-2403.
YU H, ZHANG Z Y, LIU J W. Research on scaling technology of bitcoin blockchain[J]. Journal of Computer Research and Development, 2017, 54(10): 2390-2403.
[8] POON J, DRYJA T. The bitcoin lightning network: scalable off-chain instant payments: Draft Version 0.5.9.2[R]. 2016.
[9] DECKER C, WATTENHOFER R. A fast and scalable payment network with bitcoin duplex micropayment channels[C]//LNCS 9212: Proceedings of the 17th International Sym-posium on Stabilization, Safety, and Security of Distributed Systems, Edmonton, Aug 18-21, 2015. Cham: Springer, 2015: 3-18.
[10] LUU L, NARAYANAN V, ZHENG C, et al. A secure sharding protocol for open blockchains[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Oct 24-28, 2016. New York: ACM, 2016: 17-30.
[11] KOKORIS-KOGIAS E, JOVANOVIC P, GASSER L, et al. Omniledger: a secure, scale-out, decentralized ledger via sha-rding[C]//Proceedings of the 2018 IEEE Symposium on Security and Privacy, San Francisco, May 21-23, 2018. Washington: IEEE Computer Society, 2018: 583-598.
[12] EYAL I, GENCER A E, SIRER E G, et al. Bitcoin-NG: a scalable blockchain protocol[C]//Proceedings of the 13th USENIX Symposium on Networked Systems Design and Implementation, Santa Clara, Mar 16-18, 2016. Berkeley: USENIX Association, 2016: 45-59.
[13] CACHIN C. Architecture of the hyperledger blockchain fabric: CH-8803[R]. Zurich, 2016.
[14] KOGIAS E K, JOVANOVIC P, GAILLY N, et al. Enhan-cing bitcoin security and performance with strong consis-tency via collective signing[C]//Proceedings of the 25th USENIX Security Symposium, Austin, Aug 10-12, 2016. Berkeley: USENIX Association, 2016: 279-296.
[15] ABRAHAM I, MALKHI D, NAYAK K, et al. Solida: a blockchain protocol based on reconfigurable Byzantine consensus[J]. arXiv:1612.02916, 2016.
[16] CASTRO M, LISKOV B. Practical Byzantine fault toler-ance[C]//Proceedings of the 3rd Symposium on Operating Systems Design and Implementation, New Orleans, Feb 22-25, 1999. Berkeley: USENIX Association, 1999: 173-186.
[17] QIU C, YU F R, XU F, et al. Blockchain-based distributed software-defined vehicular networks via deep Q-learning[C]// Proceedings of the 8th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applic-ations, Montreal, Oct 28-Nov 2, 2018. New York: ACM, 2018: 8-14.
[18] FU X, YU F R, WANG J, et al. Performance optimization for blockchain-enabled distributed network function virtual-ization management and orchestration[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6670-6679.
[19] LIN H, GARG S, HU J, et al. Blockchain and deep reinfo-rcement learning empowered spatial crowdsourcing in software-defined Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(6): 3755-3764.
[20] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
[21] TAVAKOLI A, PARDO F, KORMUSHEV P. Action bran-ching architectures for deep reinforcement learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 4131-4138.
[22] CASTRO M, LISKOV B. Practical Byzantine fault toler-ance and proactive recovery[J]. ACM Transactions on Computer Systems, 2002, 20(4): 398-461.
[23] JAVARONE M A, WRIGHT C S. From bitcoin to bitcoin cash: a network analysis[C]//Proceedings of the 1st Work-shop on Cryptocurrencies and Blockchains for Distributed Systems, Munich, Jun 15, 2018. New York: ACM, 2018: 77-81.
[24] KOTLA R, ALVISI L, DAHLIN M, et al. Zyzzyva: spec-ulative Byzantine fault tolerance[C]//Proceedings of the 21st ACM Symposium on Operating Systems Principles, Stevenson, Oct 14-17, 2007. New York: ACM, 2007: 45-58.
[25] GUERRAOUI R, KNE?EVI? N, QUéMA V, et al. The next 700 BFT protocols[C]//Proceedings of the 5th European Conference on Computer Systems, Paris, Apr 13-16, 2010. New York: ACM, 2010: 363-376.
[26] GINI C. Variability and mutability[J]. Journal of the Royal Statistical Society, 1913, 76: 619-622. |