[1] LIU R, WANG H, YU X. Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J]. In-formation Sciences, 2018, 450: 200-226.
[2] XU D, TIAN Y. A comprehensive survey of clustering algo-rithms[J]. Annals of Data Science, 2015, 2(2): 165-193.
[3] CHEN J, LI K, RONG H, et al. A disease diagnosis and treat-ment recommendation system based on big data mining and cloud computing[J]. Information Sciences, 2018, 435: 124-149.
[4] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Machine learning of linear differential equations using Gaussian pro-cesses[J]. Journal of Computational Physics, 2017, 348: 683-693.
[5] JANANI R, VIJAYARANI S. Text document clustering using spectral clustering algorithm with particle swarm optimiza-tion[J]. Expert Systems with Applications, 2019, 134: 192-200.
[6] WANG H, FENG Y, SA Y, et al. Pattern recognition and classification of two cancer cell lines by diffraction imaging at multiple pixel distances[J]. Pattern Recognition, 2017, 61: 234-244.
[7] MCGARRY K. Discovery of functional protein groups by clustering community links and integration of ontological knowledge[J]. Expert Systems with Applications, 2013, 40(13): 5101-5112.
[8] HOU J, LIU W, XU E, et al. Towards parameter-independent data clustering and image segmentation[J]. Pattern Recognition, 2016, 60: 25-36.
[9] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Ber-keley Symposium on Mathematical Statistics and Probabi-lity, Berkeley, 1967. Berkeley: University of California Press, 1967: 281-297.
[10] ARTHUR D, VASSILVITSKII S. K-means ++: the advan-tages of careful seeding[C]//Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Jan 7-9, 2007. Philadelphia: SIAM, 2007: 1027-1035.
[11] KRINIDIS S, CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328-1337.
[12] SHARMA A, SHARMA A. KNN-DBSCAN: using k-nearest neighbor information for parameter-free density based clus-tering[C]//Proceedings of the 2017 International Conference on Intelligent Computing, Instrumentation and Control Te-chnologies, Kerala, Jul 6-7, 2017. Piscataway: IEEE, 2017: 787-792.
[13] CHENG D, ZHU Q, HUANG J, et al. Natural neighbor-based clustering algorithm with local representatives[J]. Knowledge-Based Systems, 2017, 123: 238-253.
[14] BRYANT A, CIOS K. RNN-DBSCAN: a density-based clus-tering algorithm using reverse nearest neighbor density esti-mates[J]. IEEE Transactions on Knowledge Data Engineering, 2017, 30(6): 1109-1121.
[15] 刘娟, 万静. 自然反向最近邻优化的密度峰值聚类算法[J]. 计算机科学与探索, 2021, 15(10): 1888-1899.
LIU J, WAN J. Optimized density peak clustering algorithm by natural reverse nearest neighbor[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1888-1899.
[16] SHI J X, ZHU Q S, LI J N, et al. Hierarchical clustering based on local cores and sharing concept[C]//Proceedings of the IEEE 45th Annual Computers, Software, and Appli-cations Conference, Madrid, Jul 12-16, 2021. Piscataway: IEEE, 2021: 284-289.
[17] XIE W B, LEE Y L, WANG C, et al. Hierarchical clustering supported by reciprocal nearest neighbors[J]. Information Sciences, 2020, 527: 279-292.
[18] SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine In-telligence, 2000, 22(8): 888-905.
[19] TAO X, WANG R, CHANG R, et al. Spectral clustering algorithm using density-sensitive distance measure with global and local consistencies[J]. Knowledge-Based Systems, 2019, 170: 26-42.
[20] CHENG D, HUANG J, ZHANG S, et al. A novel approximate spectral clustering algorithm with dense cores and density peaks[J]. IEEE Transactions on Systems, Man, and Cyber-netics: Systems, 2021, 52(4): 2348-2360.
[21] 谢桦, 陈昊, 邓晓洋, 等. 基于改进K-means聚类技术与半不变量法的电-气综合能源系统运行风险评估方法[J]. 中国电机工程学报, 2020, 40(1): 59-69.
XIE H, CHEN H, DENG X Y, et al. Electric-gas integrated energy system operational risk assessment based on im-proved K-means clustering technology and semi-invariant method[J]. Proceedings of the CSEE, 2020, 40(1): 59-69.
[22] 张亚玲, 屈玲玉. 应用BWP指标的差分隐私保护k-means算法[J]. 计算机工程与应用, 2022, 58(10): 108-115.
ZHANG Y L, QU L Y. Differential privacy protection k-means algorithm based on BWP index[J]. Computer Engi-neering and Applications, 2022, 58(10): 108-115.
[23] BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy C-means clustering algorithm[J]. Computers Geosciences, 1984, 10(2/3): 191-203.
[24] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial da-tabases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, 1996. Menlo Park: AAAI, 1996: 226-231.
[25] 孙璐, 梁永全. 融合网格划分和DBSCAN的改进聚类算法[J]. 计算机工程与应用, 2022, 58(14): 73-79.
SUN L, LIANG Y Q. Improved clustering algorithm fusing grid partition and DBSCAN[J]. Computer Engineering and Applications, 2022, 58(14): 73-79.
[26] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[27] HUANG D, WANG C D, WU J S, et al. Ultra-scalable spectral clustering and ensemble clustering[J]. IEEE Transactions on Knowledge Data Engineering, 2019, 32(6): 1212-1226.
[28] LI L T, XIONG Z Y, DAI Q Z, et al. A novel graph-based clustering method using noise cutting[J]. Information Systems, 2020, 91: 101504.
[29] ZHU Q, FENG J, HUANG J. Natural neighbor: a self-adaptive neighborhood method without parameter K[J]. Pattern Re-cognition Letters, 2016, 80: 30-36.
[30] 金辉, 钱雪忠. 自然最近邻优化的密度峰值聚类算法[J]. 计算机科学与探索, 2019, 13(4): 711-720.
JIN H, QIAN X Z. Optimized density peak clustering algo-rithm by natural nearest neighbor[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 711-720. |