[1] LI B D, LI J L, TANG K, et al. Many-objective evolution-ary algorithms: a survey[J]. ACM Computing Surveys, 2015, 48(1): 13.
[2] LIEFOOGHE A, DAOLIO F, VEREL S, et al. Landscape-aware performance prediction for evolutionary multiobjec-tive optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(6): 1063-1077.
[3] 高岳林, 杨钦文, 王晓峰, 等. 新型群体智能优化算法综述[J]. 郑州大学学报(工学版), 2022, 43(3): 21-30.
GAO Y L, YANG Q W, WANG X F, et al. Overview of new swarm intelligent optimization algorithms[J]. Journal of Zhengzhou University (Engineering Edition), 2022, 43(3): 21-30.
[4] KENNEDY J, EBERHART R. Swarm intelligence[C]//Pro-ceedings of the 1995 International Conference on Neural Networks, Perth, Nov 27-Dec 1, 1995. Piscataway: IEEE, 1995: 1942-1948.
[5] 杨洋, 陈家俊. 基于群智能算法优化BP神经网络的应用研究综述[J]. 电脑知识与技术, 2020, 16(35): 7-10.
YANG Y, CHEN J J. Review on application of intelligent algorithm to optimize BP neural network[J]. Computer Knowledge and Technology, 2020, 16(35): 7-10.
[6] 史春天, 曾艳阳, 侯守明. 群体智能算法在图像分割中的应用综述[J]. 计算机工程与应用, 2021, 57(8): 36-47.
SHI C T, ZENG Y Y, HOU S M. Summary of application of swarm intelligence algorithms in image segmentation[J]. Computer Engineering and Applications, 2021, 57(8): 36-47.
[7] 李琼琼, 布升强, 杨家富. 生物群体智能算法在移动机器人路径规划中的应用研究综述[J]. 世界科技研究与发展, 2021, 43(5): 535-546.
LI Q Q, BU S Q, YANG J F. Research review on biological swarm intelligence algorithm in mobile robot path planning[J]. World Science and Technology Research and Develop-ment, 2021, 43(5): 535-546.
[8] 刘双双, 黄宜庆. 多策略蚁群算法在机器人路径规划中的应用[J]. 计算机工程与应用, 2022, 58(6): 278-286.
LIU S S, HUANG Y Q. Application of multi-strategy ant colony algorithm in robot path planning[J]. Computer Eng-ineering and Applications, 2022, 58(6): 278-286.
[9] 徐宁, 樊郁徽. 群体智能优化算法在入侵检测中的应用综述[J]. 信息与电脑(理论版), 2019(11): 41-43.
XU N, FAN Y H. A review of the application of swarm intelligence optimization algorithms in intrusion detection[J]. Information and Computer (Theoretical Edition), 2019(11): 41-43.
[10] 安家乐, 刘晓楠, 何明, 等. 量子群智能优化算法综述[J]. 计算机工程与应用, 2022, 58(7): 31-42.
AN J L, LIU X N, HE M, et al. Survey of quantum swarm intelligence optimization algorithm[J]. Computer Enginee-ring and Applications, 2022, 58(7): 31-42.
[11] 蔡雨希, 何英杰, 陈涛, 等. 基于粒子群的三电平并网逆变器LCL滤波参数的高效精确设计方法[J]. 中国电机工程学报, 2020, 40(20): 6663-6674.
CAI Y X, HE Y J, CHEN T, et al. Efficient and accurate design method of LCL filter for three-level grid-connected inverter based on particle swarm optimization[J]. Chinese Journal of Electrical Engineering, 2020, 40(20): 6663-6674.
[12] 李晓岩, 苏娜. 基于蚁群算法和神经网络的船舶图像压缩方法[J]. 舰船科学技术, 2022, 44(8): 165-168.
LI X Y, SU N. Ship image compression method based on ant colony algorithm and neural network[J]. Ship Science and Technology, 2022, 44(8): 165-168.
[13] PENA-DELGADO A F, PERAZA-VáZQUEZ H, ALMAZáN-COVARRUBIAS J H, et al. A novel bio-inspired algorithm applied to selective harmonic elimination in a three-phase eleven-level inverter[J]. Mathematical Problems in Enginee-ring, 2020: 1-10.
[14] MUKILAN P, SEMUNIGUS W. Human object detection: an enhanced black widow optimization algorithm with deep convolution neural network[J]. Neural Computing and App-lications, 2021, 33(22): 15831-15842.
[15] WILSON A J, RADHAMANI A S. Real time flood disaster monitoring based on energy efficient ensemble clustering mechanism in wireless sensor network[J]. Software Prac-tice and Experience, 2022, 52(1): 254-276.
[16] PREMKUMAR K, VISHNUPRIY A M, SUDHAKAR BABU T, et al. Black widow optimization-based optimal PI-controlled wind turbine emulator[J]. Sustainability, 2020, 12(24): 10357.
[17] LIU H W, SONG G J. A multiuser detection based on quan-tum PSO with Pareto optimality for STBC-MC-CDMA sys-tem[C]//Proceedings of the 2009 IEEE International Con-ference on Communications Technology and Applications, Beijing, Oct 16-18, 2009. Piscataway: IEEE, 2009: 652-655.
[18] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Tran-sactions on Evolutionary Computation, 2002, 6(2): 182-197.
[19] DENG L B, SONG L, SUN G J. A competitive particle swarm algorithm based on vector angles for multi-objective optimization[J]. IEEE Access, 2021, 9: 89741-89756.
[20] SOLIS F J, WETS R J B. Minimization by random search techniques[J]. Mathematics of Operations Research, 1981, 6(1): 19-30.
[21] FELZENSZWALB P F, HUTTENLOCHER D P. Efficient belief propagation for early vision[J]. International Journal of Computer Vision, 2006, 70(1): 41-54.
[22] COELLO C A C, CORTES N C. Solving multiobjective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190.
[23] ZITZLER E, THIELE L. Multiobjective evolutionary algo-rithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computa-tion, 1999, 3(4): 257-271.
[24] WANG Y N, WU L H, YUAN X F. Multi-objective self-adaptive differential evolution with elitist archive and crow-ding entropy-based diversity measure[J]. Soft Computing, 2010, 14(3): 193-209.
[25] NEBRO A J, DURILLO J J, GARCIA-NIETO J, et al. SMPSO: a new PSO-based metaheuristic for multi-objective optimization[C]//Proceedings of the 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, Nashville, Mar 30-Apr 2, 2009. Piscataway:IEEE, 2009: 66-73.
[26] YUAN Y, XU H, WANG B, et al. Balancing convergence and diversity in decomposition-based many-objective opti-mizers[J]. IEEE Transactions on Evolutionary Computa-tion, 2016, 20(2): 180-198.
[27] TIAN Y, CHENG R, ZHANG X, et al. A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization[J]. IEEE Trans-actions on Evolutionary Computation, 2019, 23(2): 331-345.
[28] TIAN Y, ZHENG X, ZHANG X, et al. Efficient largescale multi-objective optimization based on a competitive swarm optimizer[J]. IEEE Transactions on Cybernetics, 2019, 50(8): 3696-3708.
[29] TIAN Y, CHENG R, ZHANG X Y, et al. PlatEMO: a MATLAB platform for evolutionary multi-objective optimi-zation[J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87.
[30] ZHANG Q F, ZHOU A M, JIN Y C. RM-MEDA: a regu-larity model-based multiobjective estimation of distribution algorithm[J]. IEEE Transactions on Evolutionary Computa-tion, 2008, 12(1): 41-63.
[31] ZITZLER E, DEB K, THIELE L. Comparison of multi-objective evolutionary algorithms: empirical results[J]. Evolu-tionary Computation, 2000, 8(2): 173-195. |