[1] 刘紫娟. 智能算法下的复杂网络社区发现研究[D]. 重庆: 重庆大学, 2017.
LIU Z J. Research on community discovery in complex networks based on intelligence algorithm[D]. Chongqing: Chongqing University, 2017.
[2] 端祥宇, 袁冠, 孟凡荣. 动态社区发现方法研究综述[J]. 计算机科学与探索, 2021, 15(4): 612-630.
DUAN X Y, YUAN G, MENG F R. Dynamic community detection: a survey[J]. Journal of Frontiers of Computer Sci-ence and Technology, 2021, 15(4): 612-630.
[3] 高阳, 张宏莉. 动态网络社区发现综述[J]. 智能计算机与应用, 2020, 10(1): 197-199.
GAO Y, ZHANG H L. Community detection in dynamic networks: a survey[J]. Intelligent Computer and Applications, 2020, 10(1): 197-199.
[4] 李赫, 印莹, 李源, 等. 基于多目标演化聚类的大规模动态网络社区检测[J]. 计算机研究与发展, 2019, 56(2): 281-292.
LI H, YIN Y, LI Y, et al. Large-scale dynamic network com-munity detection by multi-objective evolutionary clustering[J]. Journal of Computer Research and Development, 2019, 56(2): 281-292.
[5] LI X M, WU B, GUO Q, et al. Dynamic community detec-tion algorithm based on incremental identification[C]//Procee-dings of the 2015 IEEE International Conference on Data Mining, Atlantic City, Nov 14-17, 2015. Washington: IEEE Computer Society, 2015: 900-907.
[6] MA X K, DONG D. Evolutionary nonnegative matrix facto-rization algorithms for community detection in dynamic net-works[J]. IEEE Transactions on Knowledge & Data Enginee-ring, 2017, 29(5): 1045-1058.
[7] WANG P Z, GAO L, MA X K. Dynamic community detec-tion based on network structural perturbation and topolo-gical similarity[J]. Journal of Statistical Mechanics Theory & Experiment, 2017, 1(1): 013401.
[8] CHAKRABARTI D, KUMAR R, TOMKINS A. Evolutionary clustering[C]//Proceedings of the 12th ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining, Philadelphia, Aug 20-23, 2006. New York: ACM, 2006: 554-560.
[9] LIN Y R, CHI Y, ZHU S H, et al. FacetNet: a framework for analyzing communities and their evolutions in dynamic net-works[C]//Proceedings of the 17th International Conference on World Wide Web, Beijing, Apr 21-25, 2008. New York:ACM, 2008: 685-694.
[10] KIM M S, HAN J W. A particle-and-density based evolu-tionary clustering method for dynamic networks[J]. Procee-dings of the VLDB Endowment, 2009, 2(1): 622-633.
[11] GONG M G, ZHANG L J, MA J J, et al. Community detec-tion in dynamic social networks based on multiobjective immune algorithm[J]. Journal of Computer Science and Technology, 2012, 27(3): 455-467.
[12] FOLINO F, PIZZUTI C. An evolutionary multiobjective app-roach for community discovery in dynamic networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1838-1852.
[13] ZHOU X, ZHAO X H, LIU Y H. A multiobjective discrete bat algorithm for community detection in dynamic networks[J]. Applied Intelligence, 2018, 48(9): 3081-3093.
[14] LIU F Z, WU J, XUE S, et al. Detecting the evolving community structure in dynamic social networks[J]. World Wide Web, 2019, 18: 715-733.
[15] ZENG X X, WANG W, CHEN C, et al. A consensus com-munity-based particle swarm optimization for dynamic com-munity detection[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2502-2513.
[16] ZERVOUDAKIS K, TSAFARAKIS S. A mayfly optimization algorithm[J]. Computers & Industrial Engineering, 2020, 145: 106559.
[17] EBERHART R, KENNEDY J. A new optimizer using par-ticle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Oct 4-6, 1995. Piscataway: IEEE, 1995: 39-43.
[18] GREFENSTETTE J J. Genetic algorithms and machine learning[J]. Machine Learning, 1988, 3(2): 95-99.
[19] YANG X S. Firefly algorithms for multimodal optimization[C]//LNCS 5792: Proceedings of the 5th International Sympo-sium on Stochastic Algorithms: Foundations and Applica-tions, Sapporo, Oct 26-28, 2009. Berlin, Heidelberg: Springer, 2009: 169-178.
[20] NEWMAN M. Modularity and community structure in net-works[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23): 8577-8582.
[21] LEON D, ALBERT D, JORDI D, et al. Comparing commu-nity structure identification[J]. Journal of Statistical Mecha-nics: Theory and Experiment, 2005: 09008.
[22] JENSEN M T. Reducing the run-time complexity of multi-objective EAs: the NSGA-II and other algorithms[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(5): 503-515.
[23] LI Y, LIU G, LAO S Y. A genetic algorithm for community detection in complex networks[J]. Journal of Central South University, 2013, 20(5): 1269-1276.
[24] GONG M G, CAI Q, LI Y Y, et al. An improved memetic algorithm for community detection in complex networks[C]//Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, Jun 10-15, 2012. Piscataway: IEEE, 2012: 1-8.
[25] GONG M, CAI Q, CHEN X, et al. Complex network clus-tering by multiobjective discrete particle swarm optimiza-tion based on decomposition[J]. IEEE Transactions on Evo-lutionary Computation, 2014, 18(1): 82-97.
[26] GREENE D, DOYLE D, CUNNINGHAM P. Tracking the evolution of communities in dynamic social networks[C]//Proceedings of the 2010 International Conference on Adva-nces in Social Networks Analysis and Mining, Odense, Aug 9-11, 2010. Washington: IEEE Computer Society, 2010: 176-183. |