[1] CHANEY A J B, GARTRELL M, HOFMAN J M, et al. A large-scale exploration of group viewing patterns[C]//Pro-ceedings of the 2014 ACM International Conference on Interactive Experiences for TV and Online Video,Newca-stle Upon Tyne, Jun 25-27, 2014. New York: ACM, 2014: 31-38.
[2] GUO C, LI B, TIAN X. Flickr group recommendation using rich social media information[J]. Neurocomputing, 2016, 204: 8-16.
[3] HERZOG D, W?RNDL W. A user study on groups inter-acting with tourist trip recommender systems in public spaces[C]//Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization, Larnaca, Jun 9-12, 2019. New York: ACM, 2019: 130-138.
[4] HE Z, CHOW C Y, ZHANG J D. GAME: learning grap-hical and attentive multi-view embeddings for occasional group recommendation[C]//Proceedings of the 43rd Intern-ational ACM SIGIR Conference on Research and Develop-ment in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 649-658.
[5] HE Z, CHOW C Y, ZHANG J D, et al. GRADI: towards group recommendation using attentive dual top-down and bottom-up influences[C]//Proceedings of the 2019 IEEE Int-ernational Conference on Big Data, Los Angeles, Dec 9-12, 2019. Piscataway: IEEE, 2019: 631-636.
[6] FAN W, MA Y, LI Q, et al. Graph neural networks for social recommendation[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019.New York: ACM, 2019: 417-426.
[7] YU Z, ZHOU X, HAO Y, et al. TV program recommen-dation for multiple viewers based on user profile merging[J]. User Modeling and User-Adapted Interaction, 2006, 16(1): 63-82.
[8] BALTRUNAS L, MAKCINSKAS T, RICCI F. Group recom-mendations with rank aggregation and collaborative filter-ing[C]//Proceedings of the 2010 ACM Conference on Recommender Systems, Barcelona, Sep 26-30, 2010. New York: ACM, 2010: 119-126.
[9] AMER-YAHIA S, ROY S B, CHAWLAT A, et al. Group recommendation: semantics and efficiency[J]. Proceedings of the VLDB Endowment, 2009, 2(1): 754-765.
[10] CARVALHO L A M C, MACEDO H T. Users’ satisfaction in recommendation systems for groups: an approach based on noncooperative games[C]//Proceedings of the 22nd Inte-rnational Conference on World Wide Web, Rio de Janeiro, May 13-17, 2013. New York: ACM, 2013: 951-958.
[11] WANG J, JIANG Y, SUN J, et al. Group recommendation based on a bidirectional tensor factorization model[J]. World Wide Web, 2018, 21(4): 961-984.
[12] GUO J, ZHU Y, LI A, et al. A social influence approach for group user modeling in group recommendation systems[J]. IEEE Intelligent Systems, 2016, 31(5): 40-48.
[13] YIN H, WANG Q, ZHENG K, et al. Social influence-based group representation learning for group recommendation[C]//Proceedings of the 35th IEEE International Confer-ence on Data Engineering, Macao, China, Apr 8-11, 2019. Piscataway: IEEE, 2019: 566-577.
[14] VINH TRAN L, NGUYEN PHAM T A, TAY Y, et al. Interact and decide: Medley of sub-attention networks for effective group recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 255-264.
[15] CAO D, HE X, MIAO L, et al. Attentive group recom-mendation[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Inform-ation Retrieval, Ann Arbor, Jul 8-12, 2018. New York: ACM, 2018: 645-654.
[16] CAO D, HE X, MIAO L, et al. Social-enhanced attentive group recommendation[J]. IEEE Transactions on Knowl-edge and Data Engineering, 2021, 33(3): 1195-1209.
[17] ZHU Q, WANG S, CHENG B, et al. Context-aware group recommendation for point-of-interests[J]. IEEE Access, 2018, 6: 12129-12144.
[18] SOJAHROOD Z B, TALEAI M. A POI group recom-mendation method in location-based social networks based on user influence[J]. Expert Systems with Applications, 2021, 171: 114593.
[19] 卢扬, 樊超, 韩筱璞, 等. 签到行为的可预测性及影响因素分析[J]. 电子科技大学学报, 2015, 44(2): 163-171.
LU Y, FAN C, HAN X P, et al. Predictability and influential factors on check-in behaviors[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(2): 163-171.
[20] MCLAUGHLIN M R, HERLOCKER J L. A collaborative filtering algorithm and evaluation metric that accurately model the user experience[C]//Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2004: 329-336.
[21] HERLOCKER J L, KONSTAN J A, TERVEEN L G, et al. Evaluating collaborative filtering recommender systems[J]. ACM Transactions on Information Systems, 2004, 22(1): 5-53.
[22] HAMILTON W, YING Z, LESKOVEC J. Inductive repres-entation learning on large graphs[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 1024-1034.
[23] CHEN J, ZHANG H, HE X, et al. Attentive collaborative filtering: multimedia recommendation with item-and com-ponent-level attention[C]//Proceedings of the 40th Interna-tional ACM SIGIR Conference on Research and Develo-pment in Information Retrieval,Shinjuku, Aug 7-11, 2017. New York: ACM, 2017: 335-344.
[24] HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Confer-ence on World Wide Web, Perth, Apr 3-7, 2017. New York:ACM, 2017: 173-182.
[25] WANG X, HE X, NIE L, et al. Item silk road: recom-mending items from information domains to social users[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Aug 7-11, 2017. New York: ACM, 2017: 185-194. |