计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (10): 2488-2498.DOI: 10.3778/j.issn.1673-9418.2207077

• 人工智能·模式识别 • 上一篇    下一篇

融合词性与外部知识的方面级情感分析

谷雨影,高美凤   

  1. 1. 江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
    2. 江南大学 物联网工程学院,江苏 无锡 214122
  • 出版日期:2023-10-01 发布日期:2023-10-01

Aspect-Level Sentiment Analysis Combining Part-of-Speech and External Knowledge

GU Yuying, GAO Meifeng   

  1. 1. Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2023-10-01 Published:2023-10-01

摘要: 方面级情感分析的目标是识别给定句子中特定方面词的情感极性,目前结合图卷积神经网络和句法依存树的大部分研究侧重于根据句子依赖树学习上下文和方面词间的关系,而没有专注于句法依赖树的构建,从而不能充分地利用依赖树上的信息,并且会引入噪声。针对上述问题,提出一种基于多融合邻接矩阵算法的图卷积网络模型。首先使用外部知识来增强句子中情感词的作用,并利用词性进行信息筛选,去除句子中冗余的依赖关系从而得到剪枝句法依赖树,使用多融合邻接矩阵算法将两者结合得到句法信息,将句法信息和BiLSTM层提取的语义信息输入到简化图卷积网络中进行特征融合。在五个数据集上的实验结果表明,提出的改进方法是有效的,且能明显提高模型性能。

关键词: 方面级情感分析, 图卷积神经网络(GCN), 外部知识, 词性, 句法依赖树

Abstract: The goal of aspect level affective analysis is to identify the affective polarity of specific aspect words in a given sentence. At present, most of the research combining graph convolution neural network and syntactic dependency tree focuses on learning the relationship between context and aspect words according to the sentence dependency tree, but does not focus on the construction of syntactic dependency tree, so it can’t make full use of the information on the dependency tree, and will introduce noise. To solve the above problems, this paper proposes a graph convolution network model based on multi-fusion adjacency matrix algorithm. Firstly, external knowledge is used to enhance the role of emotional words in sentences, and the part-of-speech is used for information filtering to remove redundant dependencies in sentences to obtain pruned syntactic dependency trees. The two are combined by multi-fusion adjacency matrix algorithm to obtain syntactic information. The syntactic information and the semantic information extracted from the BiLSTM layer are input into the simplified graph convolution network for feature fusion. Experimental results on five datasets show that the proposed method is effective and can significantly improve the performance of the model.

Key words: aspect sentiment analysis, graph convolutional network (GCN), external knowledge, part-of-speech;syntactic dependency tree