[1] MALOUF R, MULLEN T. Taking sides: user classification for informal online political discourse[J]. Internet Research, 2008, 18(2): 177-190.
[2] KIM Y. Convolutional neural networks for sentence classifi-cation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1746-1751.
[3] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]//Advances in Neural Information Processing?Systems?27, Montreal, Dec?8-13,?2014: 2204-2212.
[4] BAHDANAU D, CHO K, BENGIO Y. Neural machine trans-lation by jointly learning to align and translate[J]. arXiv:1409.0473, 2014.
[5] ZHOU J, JIN S Q, HUANG X L. ADeCNN: an improved model for aspect-level sentiment analysis based on defor-mable CNN and attention[J]. IEEE Access, 2020, 8: 132970-132979.
[6] LIN P Q, TANG M, LAI J H. Deep selective memory network with selective attention and inter-aspect modeling for aspect level sentiment classification[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 1093-1106.
[7] FAN F F, FENG Y S, ZHAO D Y. Multi-grained attention network for aspect-level sentiment classification[C]//Proc-eedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 3433-3442.
[8] WU C, XIONG Q Y, YANG Z Y, et al. Residual attention and other aspects module for aspect-based sentiment anal-ysis[J]. Neurocomputing, 2021, 435: 42-52.
[9] 韩虎, 郝俊, 张千锟, 等. 知识增强的交互注意力方面级情感分析模型[J]. 计算机科学与探索, 2023, 17(3): 709-718. HAN H, HAO J, ZHANG Q K, et al. Knowledge-enhanced interactive attention model for aspect-based sentiment anal-ysis[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 709-718.
[10] 孙佳慧, 韩萍, 程争. 基于知识迁移和注意力融合的方面级文本情感分析[J]. 信号处理, 2021, 37(8): 1384-1391.
SUN J H, HAN P, CHENG Z. Aspect-level sentiment anal-ysis based on knowledge transfer and attention fusion[J]. Journal of Signal Processing, 2021, 37(8): 1384-1391.
[11] REN Z Y, ZENG G P, LIU C, et al. A lexicon-enhanced attention network for aspect-level sentiment analysis[J]. IEEE Access, 2020, 8: 93464-93471.
[12] VALLE-CRUZ D, FERNANDEZ-CORTEZ V, LóPEZ-CHAU A, et al. Does twitter affect stock market decisions? Financial sentiment analysis during pandemics: a comp-arative study of the H1N1 and the COVID-19 periods[J]. Cognitive Computation, 2022, 14(1): 372-387.
[13] DISTANTE D, FARALLI S, RITTINGHAUS S, et al. Dom-ainSenticNet: an ontology and a methodology enabling domain-aware sentic computing[J]. Cognitive Computation, 2022, 14(1): 62-77.
[14] MA Y K, PENG H Y, CAMBRIA E. Targeted aspect-based sentiment analysis via embedding commonsense knowl-edge into an attentive LSTM[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5876-5883.
[15] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-14.
[16] ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional net-works[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. New York: ACM, 2019: 4567-4577.
[17] WANG B, GUO P F, WANG X, et al. Transparent aspect-level sentiment analysis based on dependency syntax anal-ysis and its application on COVID-19[J]. ACM Journal of Data and Information Quality, 2022, 14(2): 1-24.
[18] YU B G, ZHANG S W. A novel weight-oriented graph convolutional network for aspect-based sentiment analysis[J]. The Journal of Supercomputing, 2023, 79(1): 947-972.
[19] XU K H, ZHAO H, LIU T W. Aspect-specific hetero-geneous graph convolutional network for aspect-based sent-iment classification[J]. IEEE Access, 2020: 139346-139355.
[20] ZHAO M, YANG J, ZHANG J P, et al. Aggregated graph convolutional networks for aspect-based sentiment classif-ication[J]. Information Sciences, 2022, 600: 73-93.
[21] XU G T, LIU P Y, ZHU Z F, et al. Attention-enhanced graph convolutional networks for aspect-based sentiment classification with multi-head attention[J]. Applied Sciences, 2021, 11(8): 3640.
[22] LI X W, LU R, LIU P Y, et al. Graph convolutional networks with hierarchical multi-head attention for aspect-level sentiment classification[J]. The Journal of Super-computing, 2022, 78(13): 14846-14865.
[23] FELIX W, ZHANG T Y, AHD S, et al. Simplifying graph convolutional networks[J]. arXiv:1902.07153, 2019.
[24] LIANG B, SU H, GUI L, et al. Aspect-based sentiment analysis via affective knowledge enhanced graph convo-lutional networks[J]. Knowledge-Based Systems, 2022, 235: 107643.
[25] XIAO L W, XUE Y, WANG H, et al. Exploring fine-grained syntactic information for aspect-based sentiment classifi-cation with dual graph neural networks[J]. Neurocomputing, 2022, 471: 48-59.
[26] LI D, WEI F R, TAN C Q, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, Jun 23-25, 2014. Stroudsburg: ACL, 2014: 49-54.
[27] PONTIKI M, GALANIS D, PAYlLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation, Dublin, Aug 23-24, 2014. Stroudsburg: ACL, 2014: 27-35.
[28] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 task 12: aspect based sentiment analysis[C]//Proceedings of the 9th International Workshop on Semantic Evaluation, Denver, Jun 4-5, 2015. Stroudsburg: ACL, 2015: 486-495.
[29] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2016 task 5: aspect based sentiment analysis[C]//Proceedings of the 10th International Workshop on Semantic Evaluation, San Diego, Jun 16-17, 2016. Stroudsburg: ACL, 2016: 19-30.
[30] KIRITCHENKO S, ZHU X D, CHERRY C, et al. Detecting aspects and sentiment in customer reviews[C]//Proc-eedings of the 8th International Workshop on Semantic Evaluation, Dublin, Aug 23-24, 2014. Stroudsburg: ACL, 2014: 437-442.
[31] TANG D Y, QIN B, FENG X C. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Dec 11-16, 2016. Stroudsburg: ACL, 2016: 3298-3307.
[32] TANG D Y, QIN B, FENG X C, et al. Aspect level senti-ment classification with deep memory network[C]//Proce-edings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Strou-dsburg: ACL, 2016: 214-224.
[33] MA D H, LI S J, ZHANG X D, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proc-eedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 4068-4074.
[34] SONG Y W, WANG J H, JIANG T, et al. Attentional encoder network for targeted sentiment classification[C]//Proceedings of the 28th International Conference on Arti-ficial Neural Networks and Machine Learning, Munich, Sep 17-19, 2019. Cham: Springer, 2019: 93-103.
[35] CHEN Z, QIAN T Y. Transfer capsule network for aspect level sentiment classification[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Ling-uistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 547-556.
[36] HUANG B X, KATHLEEN M C. Aspect level sentiment classification with attention-over-attention neural networks[C]//LNCS 10899:Proceedings of the 2018 International Conference on Social Computing, Behavioral-Cultural Mod-eling and Prediction and Behavior Representation in Mode-ling and Simulation, Washington, Jul 10-13, 2018. Cham: Springer, 2018: 197-206.
[37] SUN K, ZHANG R C, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Proce-ssing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 5678-5687.
[38] HUANG B X, KATHLEEN M C. Syntax-aware aspect level sentiment classification with graph attention networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Proce-ssing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 5469-5477. |