[1] PAN Y, GUAN H, ZHOU S, et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China[J]. European Radiology, 2020, 30(6): 3306-3309.
[2] 高艳, 戎冬冬, 安彦虹, 等. 新型冠状病毒肺炎的X线及CT表现[J]. CT理论与应用研究, 2020, 29(2): 147-154.
GAO Y, RONG D D, AN Y H, et al. X-ray and CT features of novel coronavirus pneumonia[J]. CT Theory and Appli-cations, 2020, 29(2): 147-154.
[3] 马金林, 裘硕, 马自萍, 等. 新型冠状病毒肺炎的深度学习诊断方法综述[J]. 计算机工程与应用, 2022, 58(12): 51-65.
MA J L, QIU S, MA Z P, et al. Review of deep learning diag-nostic methods for COVID-19[J]. Computer Engineering and Applications, 2022, 58(12): 51-65.
[4] SHIBLY K H, DEY S K, ISLAM M T U, et al. COVID faster R-CNN: a novel framework to diagnose novel coronavirus disease (COVID-19) in X-ray images[J]. Informatics in Me-dicine Unlocked, 2020, 20(3): 104-115.
[5] WU Z, SHEN C, VAN DEN HENGEL A. Wider or deeper: revisiting the Resnet model for visual recognition[J]. Pattern Recognition, 2019, 90(7): 119-133.
[6] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Re-cognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Com-puter Society, 2017: 2261-2269.
[7] DAS D, SANTOSH K C, PAL U. Truncated Inception Net: COVID-19 outbreak screening using chest X-rays[J]. Physi-cal and Engineering Sciences in Medicine, 2020, 43(3): 915-925.
[8] HEIDARIAN S, AFSHAR P, ENSHAEI N, et al. COVIDFACT: a fully-automated capsule network-based framework for identification of COVID-19 cases from chest CT scans[J]. Frontiers in Artificial Intelligence, 2021, 4(1): 156-169.
[9] TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 6105-6114.
[10] OZKAYA U, OZTURK S, BARSTUGAN M. Coronavirus (COVID-19) classification using deep features fusion and ranking technique[J]. Big Data Analytics and Artificial In-telligence, 2020, 18(4): 281-295.
[11] RAHIMZADEH M, ATTAR A. A modified deep convolutional neural network for dete cting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2[J]. Informatics in Medicine Unlocked, 2020, 19(1): 349-360.
[12] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944.
[13] TOGACAR M, ERGEN B, COMERT Z. COVID-19 detec-tion using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches[J]. Computers in Biology and Medicine, 2020, 121(6): 1-12.
[14] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 4510-4520.
[15] FU G Z, SUN P Z, ZHU W B, et al. A deep learning based approach for fast and robust steel surface defects classifi-cation[J]. Optics and Lasers in Engineering, 2019, 12(1): 397-405.
[16] DOGAN U, GLASMACHERS T, IGEL C. A unified view on multiclass support vector classification[J]. Journal of Ma-chine Learning Research, 2016, 25(5): 17-32.
[17] ZHENG C, DENG X, FU Q, et al. Deep learning-based de-tection for COVID-19 from chest CT using weak label[EB/OL]. [2022-07-16]. https://doi.org/10.1101/2020.03.12.20027185.
[18] ZHOU Z H. A brief introduction to weakly supervised lear-ning[J]. National Science Review, 2018, 5(1): 44-53.
[19] NARIN A, KAYA C, PAMUK Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks[J]. Pattern Analysis and App-lications, 2021,13(4): 1-14.
[20] WANG S, ZHA Y F, LI W M, et al. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis[J]. European Respiratory Journal, 2020, 56(5): 2000775.
[21] CHOWDHURY N K, KABIR M A, RAHMAN M M, et al.ECOVNet: a highly effective ensemble based deep learning model for detecting COVID-19[J]. PeerJ Computer Science, 2021, 7(7): 551-561.
[22] HE K, CHEN X, XIE S, et al. Masked autoencoders are scalable vision learners[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion, Louisiana, Jun 19-24, 2022. Piscataway: IEEE, 2022: 15979-15988.
[23] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recog-nition at scale[C]//Proceedings of the 9th International Con-ference on Learning Representations, Vienna, May 3-7, 2021: 11929-11941.
[24] MCNUTT A T, KOES D R. Improving ΔΔG predictions with a multitask convolutional siamese network[J]. Journal of Chemical Information and Modeling, 2022,17(8): 62-75.
[25] CHEN T, LU Z, YANG Y, et al. A siamese network based U-Net for change detection in high resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 4(15): 221-236.
[26] CHEN X, HE K. Exploring simple siamese representation learning[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021.Piscataway: IEEE, 2021: 15750-15758.
[27] RAHMAN T, KHANDAKAR A, QIBLAWEY Y, et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images[J]. Compu-ters in Biology and Medicine, 2021, 7(5): 132-141.
[28] COHEN J P, MORRISON P, LAN D, et al. COVID-19 image data collection: prospective predictions are the future[J]. BMC Public Health, 2020, 36(7): 1-11.
[29] YANG X, HE X, ZHAO J, et al. COVID-CT- Dataset: a CT scan dataset about COVID-19[J]. Journal of Diabetes Inves-tigation, 2020,17(3): 135-147.
[30] SOARES E, ANGELOV P, BIASO S, et al. SARS -CoV-2 CT-scan dataset: a large dataset of real patients CT-scans for SARS-CoV-2 identification[J]. Cold Spring Harbor La-boratory Press, 2020, 27(2): 128-134.
[31] 冯毅博, 仇大伟, 曹慧, 等. 基于深度可分离稠密网络的新型冠状病毒肺炎X射线图像检测方法研究[J]. 生物医学工程学杂志, 2020, 37(4): 557-565.
FENG Y B, QIU D W, CAO H, et al. Research on X-ray image detection of novel coronavirus pneumonia based on deep separable dense network[J]. Journal of Biomedical En-gineering, 2020, 37(4): 557-565.
[32] BHATT A, GANATRA A, KOTECHA K. COVID-19 pul-monary consolidations detection in chest X-ray using pro-gressive resizing and transfer learning techniques[J]. Heliyon, 2021, 7(6): 72-81.
[33] QI X, FORAN D J, NOSHER J L, et al. Multi-feature vision transformer via self-supervised representation learning for improvement of COVID-19 diagnosis[C]//LNCS 13559: Pro-ceedings of the 1st International Workshop on Medical Image Learning with Limited and Noisy Data, Singapore, Sep 16-23, 2022. Cham: Springer, 2022: 76-85.
[34] ARDAKANI A A, KANAFI A R, ACHARYA U R, et al. Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks[J]. Computers in Biology and Medicine, 2020, 48(3): 121-129.
[35] BANERJEE A, BHATTACHARYA R, BHATEJA V, et al. COFE-Net: an ensemble strategy for computer-aided detection for COVID-19[J]. Measurement, 2022, 29(7): 187-196.
[36] FAN X, FENG X, DONG Y, et al. COVID-19 CT image recognition algorithm based on transformer and CNN[J]. Displays, 2022, 72(1): 150-165. |