[1] DENG X, MA Y, DONG M. A new adaptive filtering method for removing salt and pepper noise based on multilayered PCNN[J]. Pattern Recognition Letters, 2016, 79: 8-17.
[2] ZHANG P, LI F. A new adaptive weighted mean filter for removing salt-and-pepper noise[J]. IEEE Signal Processing Letters, 2014, 21(10): 1280-1283.
[3] TEUBER T, REMMELE S, HESSER J, et al. Denoising by second order statistics[J]. Signal Processing, 2012, 92(12): 2837-2847.
[4] BHADOURIA V S, GHOSHAL D. A study on genetic expression programming-based approach for impulse noise reduction in images[J]. Signal Image & Video Processing, 2016, 10: 575-584.
[5] ESAKKIRAJAN S, VEERAKUMAR T, SUBRAMANYAM A N, et al. Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter[J]. IEEE Signal Processing Letters, 2011, 18(5): 287-290.
[6] ERKAN U, G?KREM L. A new method based on pixel density in salt and pepper noise removal[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2018, 26(1): 162-171.
[7] ERKAN U, G?KREM L, ENGINOGLU S. Different applied median filter in salt and pepper noise[J]. Computers & Electrical Engineering, 2018, 70: 789-798.
[8] HWANG H, HADDAD R A. Adaptive median filters: new algorithms and results[J]. IEEE Transactions on Image Processing, 1995, 4(4): 499-502.
[9] ERKAN U, ENGINOLU S, DANG N, et al. Adaptive frequency median filter for the salt and pepper denoising problem[J]. IET Image Processing, 2020, 14(7): 1291-1302.
[10] MEMI? S, ERKAN U. Different adaptive modified Riesz mean filter for high-density salt-and-pepper noise removal in grayscale images[J]. European Journal of Science and Technology, 2021(23): 359-367.
[11] ZADEH L A. Fuzzy sets[J]. Information & Control, 1965, 8(3): 338-353.
[12] TOH K K V, ISA N A M. Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction[J]. IEEE Signal Processing Letters, 2010, 17(3): 281-284.
[13] ROY A, MANAM L, LASKAR R H. Region adaptive fuzzy filter: an approach for removal of random-valued impulse noise[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7268-7278.
[14] BURILLO P, BUSTINCE H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 1996, 78(3): 305-316.
[15] ANANTHI V P, BALASUBRAMANIAM P. A new image denoising method using interval-valued intuitionistic fuzzy sets for the removal of impulse noise[J]. Signal Processing, 2016, 121: 81-93.
[16] ANANTHI V P, BALASUBRAMANIAM P, RAVEENDRAN P. Impulse noise detection technique based on fuzzy set[J]. IET Signal Processing, 2018, 12(1): 12-21.
[17] GUO K H, SONG Q. On the entropy for Atanassov’s intui-tionistic fuzzy sets: an interpretation from the perspective of amount of knowledge[J]. Applied Soft Computing, 2014, 24: 328-340.
[18] SZMIDT E, KACPRZYK J, BUJNOWSKI P. How to measure the amount of knowledge conveyed by Atanassov’s intuitionistic fuzzy sets[J]. Information Sciences, 2014, 257: 276-285.
[19] DAS S, DUTTA B, GUHA D. Weight computation of criteria in a decision-making problem by knowledge measure with intuitionistic fuzzy set and interval-valued intuitionistic fuzzy set[J]. Soft Computing, 2016, 20(9): 3421-3442.
[20] NGUYEN H. A new knowledge-based measure for intui-tionistic fuzzy sets and its application in multiple attribute group decision making[J]. Expert Systems with Applications, 2015, 42(22): 8766-8774.
[21] NGUYEN H. A new interval-valued knowledge measure for interval-valued intuitionistic fuzzy sets and application in decision making[J]. Expert Systems with Applications, 2016, 56: 143-155.
[22] GUO K H. Knowledge measure for Atanassov’s intuitionistic fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2016, 24: 1072-1078.
[23] GUO K H, ZANG J. Knowledge measure for interval-valued intuitionistic fuzzy sets and its application to decision making under uncertainty[J]. Soft Computing, 2019, 23(16): 6967-6978.
[24] GUO K H, XU H. Knowledge measure for intuitionistic fuzzy sets with attitude towards non-specificity[J]. Interna-tional Journal of Machine Learning and Cybernetics, 2019, 10(7): 1657-1669.
[25] GUO K H, XU H. Preference and attitude in parameterized knowledge measure for decision making under uncertainty[J]. Applied Intelligence, 2021, 51(2): 7484-7493.
[26] GUO K H, XU H. A unified framework for knowledge measure with application: from fuzzy sets through interval-valued intuitionistic fuzzy sets[J]. Applied Soft Computing, 2021, 109(1): 107539.
[27] 郭凯红, 王紫晴. Hamming-Hausdorff距离下区间直觉模糊知识测度及应用[J]. 软件学报, 2022, 33(11): 4251-4267.
GUO K H, WANG Z Q. Interval-valued intuitionistic fuzzy knowledge measure with applications based on Hamming-Hausdorff distance[J]. Journal of Software, 2022, 33(11): 4251-4267.
[28] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets & Systems, 1986, 20(1): 87-96.
[29] HUNG W L, YANG M S. Fuzzy entropy on intuitionistic fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 21(4): 443-451.
[30] SZMIDT E, KACPRZYK J. Entropy for intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 2001, 118(3): 467-477.
[31] BUSTINCE H, BARRENECHEA E, PAGOLA M. Image thresholding using restricted equivalence functions and maximizing the measures of similarity[J]. Fuzzy Sets and Systems, 2007, 158(5): 496-516.
[32] ASUNI N, GIACHETTI A. TESTIMAGES: a large-scale archive for testing visual devices and basic image processing algorithms[C]//Proceedings of the Italian Chapter Conference 2014-Smart Tools and Apps in Computer Graphics, Cagliari, Sep 22-23, 2014: 63-70.
[33] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[34] DJUROVI? I. Combination of the adaptive Kuwahara and BM3D filters for filtering mixed Gaussian and impulsive noise[J]. Signal, Image and Video Processing, 2017, 11(4): 753-760.
[35] SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444. |