[1] 易灵芝, 林佳豪, 刘建康, 等. 改进自适应MOEA/D算法的楼宇负荷优化调度[J]. 计算机工程与应用, 2022, 58(2): 295-302.
YI L Z, LIN J H, LIU J K, et al. Improved adaptive MOEA/D algorithm for building load optimization scheduling[J]. Computer Engineering and Applications, 2022, 58(2): 295-302.
[2] 王琴, 杨信丰, 李楠, 等. 不确定环境下的危险品运输车辆路径优化[J]. 计算机工程与应用, 2022, 58(15): 309-316.
WANG Q, YANG X F, LI N, et al. Route optimization of hazardous materials transportation vehicles in uncertain environ-ment[J]. Computer Engineering and Applications, 2022, 58(15): 309-316.
[3] 顾清华, 莫明慧, 卢才武, 等. 求解约束高维多目标问题的分解约束支配NSGA-Ⅱ优化算法[J]. 控制与决策, 2020, 35(10): 9-15.
GU Q H, MO M H, LU C W, et al. Decomposition-based constrained dominance principle NSGA-II for constrained many-objective optimization problems[J]. Control and Decision, 2020, 35(10): 9-15.
[4] 栾宪超, 常健, 王聪, 等. 主动关节履带式蛇形救援机器人结构参数多目标优化设计[J]. 机器人, 2022, 44(3): 267-280.
LUAN X C, CHANG J, WANG C, et al. Multi-objective optimization design of structural parameters for a crawler type snake-like rescue robot with active joint[J]. ROBOT, 2022, 44(3): 267-280.
[5] 宋超, 周铸, 李伟斌, 等. 旋翼翼型高维多目标气动优化设计[J]. 北京航空航天大学学报, 2022, 48(1): 95-105.
SONG C, ZHOU Z, LI W B, et al. Many-objective aero-dynamic optimization design of rotor airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 95-105.
[6] DEB K, AGARWAL S, MEYARIVAN T. A fast elitist non-dominated sorting genetic algorithm for multi-objective op-timization NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[7] ZHANG Q, HUI L. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2008, 11(6): 712-731.
[8] LI B, LI J, TANG K, et al. Many-objective evolutionary algorithms: a survey[J]. ACM Computing Surveys, 2015, 48(1): 1-35.
[9] ZHU S, XU L, GOODMAN E D, et al. A new many-objective evolutionary algorithm based on generalized pareto dominance[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 7776-7790.
[10] 谢承旺, 余伟伟, 郭华, 等. DAV-MOEA: 一种采用动态角度向量支配关系的高维多目标进化算法[J]. 计算机学报, 2022, 45(2): 317-333.
XIE C W, YU W W, GUO H, et al. DAV-MOEA: a many-objective evolutionary algorithm adopting dynamic angle vector based dominance relation[J]. Chinese Journal of Computers, 2022, 45(2): 317-333.
[11] LIU Y, ZHU N, LI K, et al. An angle dominance criterion for evolutionary many-objective optimization[J]. Information Sciences, 2020, 509: 376-399.
[12] SHEN J, WANG P, WANG X. A controlled strengthened dominance relation for evolutionary many-objective optimization[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 3645-3657.
[13] KHAN B, HANOUN S, JOHNSTONE M, et al. A scalarization-based dominance evolutionary algorithm for many-objective optimization[J]. Information Sciences, 2019, 474: 236-252.
[14] GU Q, CHEN H, CHEN L, et al. A many-objective evolu-tionary algorithm with reference points-based strengthened dominance relation[J]. Information Sciences, 2020, 554: 236-255.
[15] ZHOU C, DAI G, WANG M. Enhanced theta dominance and density selection based evolutionary algorithm for many-objective optimization problems[J]. Applied Intelligence, 2018, 48(4): 992-1012.
[16] WANG H, JIAO L, YAO X. Two_Arch2: an improved two-archive algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(4): 524-541.
[17] HE C, TIAN Y, JIN Y, et al. A radial space division based evolutionary algorithm for many-objective optimization[J]. Applied Soft Computing, 2017, 61: 603-621.
[18] ZHOU J, ZOU J, YANG S, et al. Niche-based and angle-based selection strategies for many-objective evolutionary optimi-zation[J]. Information Sciences, 2021, 571: 133-153.
[19] CHEN H, CHENG R, PEDRYCZ W, et al. Solving many-objective optimization problems via multistage evolutionary search[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(6): 3552-3564.
[20] MING F, GONG W, WANG L. A two-stage evolutionary algorithm with balanced convergence and diversity for many-objective optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022,52(10): 6222-6234.
[21] PANICHELLA A. An adaptive evolutionary algorithm based on non-Euclidean geometry for many-objective optimization[C]//Proceedings of the 2019 Genetic and Evolutionary Com-putation Conference, Prague, Jul 13-17, 2019. New York: ACM, 2019: 595-603.
[22] LIANG Z, LUO T, HU K, et al. An indicator-based many-objective evolutionary algorithm with boundary protection[J]. IEEE Transactions on Cybernetics, 2021, 51(9): 4553-4566.
[23] LI L, YEN G G, SAHOO A, et al. On the estimation of Pareto front and dimensional similarity in many-objective evolu-tionary algorithm[J]. Information Sciences, 2021, 563: 375-400.
[24] ZOU J, FU L, YANG S, et al. An adaptation reference-point-based multiobjective evolutionary algorithm[J]. Information Sciences, 2019, 488: 41-57.
[25] MZ A, LEI W A, WL B, et al. Many-objective evolutionary algorithm with adaptive reference vector[J]. Information Sciences, 2021, 563(2): 70-90.
[26] YUAN Y, XU H, WANG B, et al. Balancing convergence and diversity in decomposition-based many-objective opti-mizers[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(2): 180-198.
[27] CHEN J, DING J, TAN K C, et al. A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization[J]. Memetic Computing, 2021, 13(3): 413-432.
[28] LIU R, WANG R, BIAN R, et al. A decomposition-based evolutionary algorithm with correlative selection mechanism for many-objective optimization[J]. Evolutionary Computation, 2021, 29(2): 269-304.
[29] DEB K, JAIN H. An evolutionary many-objective optimi-zation algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box cons-traints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
[30] QI Y, LIU D, LI X, et al. An adaptive penalty-based boun-dary intersection method for many-objective optimization problem[J]. Information Sciences, 2020, 509: 356-375.
[31] ZOU J, ZHANG Z, ZHENG J, et al. A many-objective evo-lutionary algorithm based on dominance and decomposi-tion with reference point adaptation[J]. Knowledge-Based Systems, 2021, 231: 912-931.
[32] SUN Y, YEN G G, YI Z. IGD indicator-based evolutionary algorithm for many-objective optimization problems[J]. IEEE Transaction on Evolutionary Computation, 2018, 23(2): 173-187.
[33] CAI X, XIAO Y, LI M, et al. A grid-based inverted genera-tional distance for multi/many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1): 21-34.
[34] HERNáNDEZ G R, COELLO COELLO C A. Improved metaheuristic based on the R2 indicator for many-objective optimization[C]//Proceedings of the 2015 Genetic and Evolu-tionary Computation Conference, Madrid, Jul 11-15, 2015.New York: ACM, 2015: 679-686.
[35] 陈国玉, 李军华, 黎明, 等. 基于R2指标和参考向量的高维多目标进化算法[J]. 自动化学报, 2021, 47(11): 2675-2690.
CHEN G Y, LI J H, LI M, et al. An R2 indicator and reference vector based many-objective optimization evolutionary algo-rithm[J]. Acta Automatica Sinica, 2021, 47(11): 2675-2690.
[36] BADER J, ZITZLER E. HypE: an algorithm for fast hyper-volume-based many-objective optimization[J]. Evolutionary Computation, 2011, 19(1): 45-76.
[37] TRINADH, PAMULAPATI, RAMMOHAN, et al. [ISDE+]—an indicator for multi and many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 346-352.
[38] AGRAWAL R B, DEB K. Simulated binary crossover for continuous search space[J]. Complex Systems, 1995, 9(3): 115-148.
[39] DEB K, GOYAL M. A combined genetic adaptive search (GeneAS) for engineering design[J]. Computer Science and Informatics, 1996, 26(4): 30-45.
[40] DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multi-objective optimization[J]. Evolutionary Multiobjective Optimization, 2006: 105-145.
[41] CHENG R, LI M, TIAN Y, et al. A benchmark test suite for evolutionary many-objective optimization[J]. Complex & Intelligent Systems, 2017, 3(1): 67-81.
[42] YANG F, XU L, CHU X, et al. A new dominance relation based on convergence indicators and niching for many-objective op-timization[J]. Applied Intelligence, 2021, 51(8): 5525-5542.
[43] LIANG Z, LUO T, HU K, et al. An indicator-based many-objective evolutionary algorithm with boundary protection[J]. IEEE Transactions on Cybernetics, 2021, 51(9): 4553 - 4566.
[44] ZITZLER E, THIELE L, LAUMANNS M, et al. Performance assessment of multiobjective optimizers: an analysis and re-view[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 117-132.
[45] DERRAC J, GARCIA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a me-thodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18.
[46] YUAN Y, XU H, WANG B, et al. A new dominance relation-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(1): 16-37. |