[1] DENG W, ZHANG X, ZHOU Y, et al. An enhanced fast non-dominated solution sorting genetic algorithm for multiobjective problems[J]. Information Sciences, 2022, 585: 441-453.
[2] LI J, WANG P, DONG H, et al. A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization[J]. Knowledge-Based Systems, 2022, 242: 108416.
[3] XU X, FU S, LI W, et al. Multi-objective data placement for workflow management in cloud infrastructure using NSGA-II[J]. IEEE Transactions on Emerging Topics in Com-putational Intelligence, 2020, 4(5): 605-615.
[4] COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
[5] ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm[J]. TIK-Report, 2001, 103.
[6] ZHANG Q, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[7] 韩红桂, 卢薇, 乔俊飞. 一种基于多样性信息和收敛度的多目标粒子群优化算法[J]. 电子学报, 2018, 46(2): 315-324.
HAN H G, LU W, QIAO J F. A multiobjective particle swarm optimization algorithm based on the diversity information and convergence degree[J]. Acta Electronica Sinica, 2018, 46(2): 315-324.
[8] 黄辉先, 胡拚, 丁灿, 等. 进化信息引导的烟花差分混合多目标算法[J]. 计算机科学与探索, 2019, 13(3): 481-493.
HUANG H X, HU P, DING C, et al. Fireworks and differential hybrid multi-objective algorithm guided by evolutionary information[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(3): 481-493.
[9] 沈艳霞, 陈杰, 吴定会. 一种基于进化知识融合的多目标人工蜂群算法[J]. 控制与决策, 2017, 32(12): 2176-2182.
SHEN Y X, CHEN J, WU D H. A multi-objective artificial bee colony based on evolutionary knowledge integrated[J]. Control and Decision, 2017, 32(12): 2176-2182.
[10] 刘双双, 黄宜庆. 多策略蚁群算法在机器人路径规划中的应用[J]. 计算机工程与应用, 2022, 58(6): 278-286.
LIU S S, HUANG Y Q. Application of multi-strategy ant colony algorithm in robot path planning[J]. Computer Engineering and Applications, 2022, 58(6): 278-286.
[11] 蔡雨希, 何英杰, 陈涛, 等. 基于粒子群的三电平并网逆变器LCL滤波参数的高效精确设计方法[J]. 中国电机工程学报, 2020, 40(20): 6663-6674.
CAI Y X, HE Y J, CHEN T, et al. Efficient and accurate design method of LCL filter for three-level grid-connected inverter based on particle swarm optimization[J]. Chinese Journal of Electrical Engineering, 2020, 40(20): 6663-6674.
[12] WHITLEY D. A genetic algorithm tutorial[J]. Statistics and Computing, 1994, 4(2): 65-85.
[13] POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1): 33-57.
[14] DORIGO M, BIRATTARI M, STUTZLE T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39.
[15] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191.
[16] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
[17] 安家乐, 刘晓楠, 何明, 等. 量子群智能优化算法综述[J]. 计算机工程与应用, 2022, 58(7): 31-42.
AN J L, LIU X N, HE M, et al. Survey of quantum swarm intelligence optimization algorithm[J]. Computer Engineering and Applications, 2022, 58(7): 31-42.
[18] JANGIR P, BUCH H, MIRJALILI S, et al. MOMPA: multi-objective marine predator algorithm for solving multi-objective optimization problems[J]. Evolutionary Intelligence, 2023, 16(1): 169-195.
[19] CHOU J S, TRUONG D N. Multi-objective optimization inspired by behavior of jellyfish for solving structural design problems[J]. Chaos, Solitons & Fractals, 2020, 135: 109738.
[20] MIRJALILI S, SAREMI S, MIRJALILI S M, et al. Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization[J]. Expert Systems with Applications, 2016, 47: 106-119.
[21] DHIMAN G, KUMAR V. Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems[J]. Knowledge-Based Systems, 2018, 150: 175-197.
[22] KOPPEN M, WOLPERT D H, MACEREADY W G. Remarks on a recent paper on the “no free lunch” theorems[J]. IEEE Transactions on Evolutionary Computation, 2001, 5(3): 295-296.
[23] AGUSHAKA J O, EZUGWU A E, ABUALIGAH L. Dwarf mongoose optimization algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 391: 114570.
[24] AKINOLA O A, AGUSHAKA J O, EZUGWU A E. Binary dwarf mongoose optimizer for solving high-dimensional feature selection problems[J]. PLoS One, 2022, 17(10): e0274850.
[25] ALDOSARI F, ABUALIGAH L, ALMOTAIRI K H. A normal distributed dwarf mongoose optimization algorithm for global optimization and data clustering applications[J]. Symmetry, 2022, 14(5): 1021.
[26] 张孟健, 龙道银, 王霄, 等. 基于马尔科夫链的灰狼优化算法收敛性研究[J]. 电子学报, 2020, 48(8): 1587-1595.
ZHANG M J, LONG D Y, WANG X, et al. Research on convergence of grey wolf optimization algorithm based on Markov chain[J]. Acta Electronica Sinica, 2020, 48(8): 1587-1595.
[27] ZHANG S, REN Z, LI C, et al. A perturbation adaptive pursuit strategy based hyper-heuristic for multi-objective optimization problems[J]. Swarm and Evolutionary Computation, 2020, 54: 100647.
[28] SANDOVAL C, CUATE O, GONZALEZ L C, et al. Towards fast approximations for the hypervolume indicator for multi-objective optimization problems by genetic programming[J]. Applied Soft Computing, 2022, 125: 109103.
[29] DUMAN S, AKBEL M, KAHRAMAN H T. Development of the multi-objective adaptive guided differential evolution and optimization of the MO-ACOPF for wind/PV/tidal energy sources[J]. Applied Soft Computing, 2021, 112: 107814.
[30] HALLAM N, BLANCHFIELD P, KENDALL G. Handling diversity in evolutionary multi objective optimization[C]//Proceedings of the 2005 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2005: 2233-2240.
[31] HUSSAIN K, SALLEH M N M, CHENG S, et al. On the exploration and exploitation in popular swarm-based metaheuristic algorithms[J]. Neural Computing and Applications, 2019, 31(11): 7665-7683. |