[1] 朱佳莹, 高茂庭. 融合粒子群与改进蚁群算法的AUV路径规划算法[J]. 计算机工程与应用, 2021, 57(6): 267-273.
ZHU J Y, GAO M T. AUV path planning algorithm based on particle swarm optimization and improved ant colony algorithm[J]. Computer Engineering and Applications, 2021, 57(6): 267-273.
[2] 胡晓敏, 王明丰, 张首荣, 等. 用于文本聚类的新型差分进化粒子群算法[J]. 计算机工程与应用, 2021, 57(4): 61-67.
HU X M, WANG M F, ZHANG S R, et al. New differential evolution with particle swarm optimization algorithm for text clustering[J]. Computer Engineering and Applications, 2021, 57(4): 61-67.
[3] 张晗, 杨继斌, 张继业, 等. 基于多种群萤火虫算法的车载燃料电池直流微电网能量管理优化[J]. 中国电机工程学报, 2021, 41(3): 833-846.
ZHANG H, YANG J B, ZHANG J Y, et al. Multiple-population firefly algorithm-based energy management strategy for vehicle-mounted fuel cell DC microgrid[J]. Proceedings of the CSEE, 2021, 41(3): 833-846.
[4] ZALDíVAR D, MORALES B, RODRíGUEZ A, et al. A novel bio-inspired optimization model based on Yellow Saddle Goatfish behavior[J]. Biosystems, 2018, 174: 1-21.
[5] ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715-734.
[6] KAUR S, AWASTHI L K, SANGAL A L, et al. Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103541.
[7] FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine predators algorithm: a nature-inspired metaheuristic[J]. Expert Systems with Applications, 2020, 152: 113377.
[8] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872.
[9] KHALIFEH S, AKBARIFARD S, KHALIFEH V. Optimization of water distribution of network systems using the Harris hawks optimization algorithm (case study: Homashahr City)[J]. MethodsX, 2020, 7: 100948.
[10] MARY A H, MIRY A H, MIRY M H. An optimal robust state feedback controller for the AVR system-based Harris hawks optimization algorithm[J]. Electric Power Components and Systems, 2021, 48(16/17): 1684-1694.
[11] ISMAEL O M, QASIM O S, ALGAMAL Z Y. A new adaptive algorithm for v-support vector regression with feature selection using Harris hawks optimization algorithm[J]. Journal of Physics Conference Series, 2021, 1897(1): 12-57.
[12] ZHANG H, NGUYEN H, BUI X N, et al. A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris hawks optimization algorithm[J]. Engineering with Computers, 2022, 38(5): 3901-3914.
[13] JIA H M, LANG C B, OLIVA D, et al. Dynamic Harris hawks optimization with mutation mechanism for satellite image segmentation[J]. Remote Sensing, 2019, 11(12): 1421.
[14] WUNNAVA A, NAIK M K, PANDA R, et al. A differential evolutionary adaptive Harris hawks optimization for two dimensional practical Masi entropy-based multilevel image thresholding[J]. Journal of King Saud University-Computer and Information Sciences, 2020, 34: 3011-3024.
[15] GUO H R, MENG X Y, LIU Y L, et al. Improved HHO algorithm based on good point set and nonlinear convergence formula[J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(2): 48-67.
[16] 赵世杰, 高雷阜, 于冬梅, 等. 融合能量周期性递减与牛顿局部增强的改进HHO算法[J]. 控制与决策, 2021, 36(3): 629-636.
ZHAO S J, GAO L F, YU D M, et al. Improved Harris hawks optimization coupling energy cycle decline mechanism and newton local enhancement strategy[J]. Control and Decision, 2021, 36(3): 629-636.
[17] USSIEN A G, AMIN M. A self-adaptive Harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(2): 309-336.
[18] HUSSAIN K, NEGGAZ N, ZHU W, et al. An effcient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection[J]. Expert Systems with Applications, 2021, 176: 114778.
[19] 郭雨鑫, 刘升, 高文欣, 等. 精英反向学习与黄金正弦优化的HHO算法[J]. 计算机工程与应用, 2022, 58(10): 153-161.
GUO Y X, LIU S, GAO W X, et al. Elite opposition-based learning golden-sine Harris hawks optimization[J]. Computer Engineering and Applications, 2022, 58(10): 153-161.
[20] 刘小龙, 梁彤缨. 基于方形邻域和随机数组的哈里斯鹰优化算法[J]. 控制与决策, 2022, 37(10): 2467-2476.
LIU X L, LIANG T Y. Harris hawk optimization algorithm based on square neighborhood and random array[J]. Control and Decision, 2022, 37(10): 2467-2476.
[21] 刘道华, 原思聪, 兰洋, 等. 混沌映射的粒子群优化方法[J]. 西安电子科技大学学报, 2010, 37(4): 764-769.
LIU D H, YUAN S C, LAN Y, et al. Method of particle swarm optimization based on the chaos map[J]. Journal of Xidian University, 2010, 37(4): 764-769.
[22] 单梁, 强浩, 李军, 等. 基于Tent映射的混沌优化算法[J]. 控制与决策, 2005, 20(2): 179-182.
SHAN L, QIANG H, LI J, et al. Chaotic optimization algorithm based on Tent map[J]. Control and Decision, 2005, 20(2): 179-182.
[23] 张达敏, 徐航, 王依柔, 等. 嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J]. 控制与决策, 2021, 36(5): 1173-1180.
ZHANG D M, XU H, WANG Y R, et al. Whale optimization algorithm for embedded Circle mapping and one dimensional oppositional learning based small hole imaging[J]. Control and Decision, 2021, 36(5): 1173-1180.
[24] KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Network, Perth, Nov 27-Dec 1, 1995. Piscataway: IEEE, 1995: 1942-1948.
[25] 周方俊, 王向军, 张民. 基于t分布变异的进化规划[J].电子学报, 2008, 36(4): 667-671.
ZHOU F J, WANG X J, ZHANG M. Evolutionary pro-gramming based on t-distribution variation[J]. Acta Elect-ronica Sinica, 2008, 36(4): 667-671.
[26] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//Proceedings of the 2005 Com-putational Intelligence for Modelling. Washington: IEEE Computer Society, 2005: 695-701.
[27] LONG W, JIAO J J, LIANG X M, et al. A random opposition- based learning grey wolf optimizer[J]. IEEE Access, 2019, 7: 113810-113825.
[28] GHASEMI M, AKBARI E, RAHIMNEJAD A, et al. Phasor particle swarm optimization: a simple and efficient variant of PSO[J]. Soft Computing, 2013, 23(19): 9701-9718.
[29] 何庆, 魏康园, 徐钦帅. 基于混合策略改进的鲸鱼优化算法[J]. 计算机应用研究, 2019, 36(12): 3647-3651.
HE Q, WEI K Y, XU Q S. Improved whale optimization algorithm based on hybrid strategy[J]. Application Research of Computers, 2019, 36(12): 3647-3651.
[30] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
[31] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191. |