[1] SINGH R, XU J B, BERGER B. Global alignment of multiple protein interaction networks with application to functional orthology detection[J]. Proceedings of the National Academy of Sciences of the USA , 2008, 105(35): 12763-12768.
[2] NEWMAN M E J. Clustering and preferential attachment in growing networks[J]. Physical Review E, 2001, 2: 025102.
[3] KOSSINETS G. Effects of missing data in social networks[J]. Social Networks, 2006, 28(3): 247-268.
[4] CLAUSET A, MOORE C, NEWMAN M E J. Hierarchical structure and the prediction of missing links in networks[J].Nature, 2008, 453: 98-101.
[5] ADAMIC L A, ADAR E. Friends and neighbors on the Web[J]. Social Networks, 2003, 25(3): 211-230.
[6] ZHOU T, Lü L Y, ZHANG Y C. Predicting missing links via local information[J]. European Physical Journal B, 2009, 71: 623-630.
[7] WHITE H C, BOORMAN S A, BREIGER R L. Social struc-ture from multiple networks I: blockmodels of roles and positions[J]. American Journal of Sociology, 1976, 81(4): 730-780.
[8] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710.
[9] GROVER A, LESKOVEC J. node2vec: scalable feature lear-ning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864.
[10] TANG J, QU M, WANG M Z, et al. LINE: large-scale in-formation network embedding[C]//Proceedings of the 24th International Conference on World Wide Web, Florence,May 18-22, 2015. New York: ACM, 2015: 1067-1077.
[11] RIBEIRO L F, SAVERRSE P H, FIGUEIREDO D R. struc-2vec: learning node representations from structural identity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 385-394.
[12] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[13] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[14] XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[C]//Proceedings of the 7th Interna-tional Conference on Learning Representations, New Orleans, May 6-9, 2019: 1-17.
[15] HAMILTON W L, YING Z T, LESKOVEC J. Inductive rep-resentation learning on large graphs[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Asso-ciates, 2017: 1024-1034.
[16] ZHANG M H, CHEN Y X. Link prediction based on graph neural networks[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2018, Montréal, Dec 3-8, 2018: 5171-5181.
[17] WANG L, REN J, XU B, et al. MODEL: motif-based deep feature learning for link prediction[J]. IEEE Transactions on Computational Social Systems, 2020, 7(2): 503-516.
[18] SANKAR A, ZHANG X Y, CHANG C C K. Meta-GNN: metagraph neural network for semi-supervised learning in attributed heterogeneous information networks[C]//Procee-dings of the 2019 International Conference on Advances in Social Networks Analysis and Mining, Vancouver, Aug 27-30, 2019. New York: ACM, 2019: 137-144.
[19] MILO R. Simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824-827.
[20] KIPF T N, WELLING M. Variational graph auto-encoders [J]. arXiv:1611.07308, 2016.
[21] MATTHIEU L. Main-memory triangle computations for very large (sparse (power-law)) graphs[J]. Theoretical Computer Science, 2008, 407: 458-473.
[22] GU W, GAO F, LOU X, et al. Link prediction via graph attention network[J]. arXiv:1910.04807, 2019.
|