计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (5): 1339-1347.DOI: 10.3778/j.issn.1673-9418.2301045

• 人工智能·模式识别 • 上一篇    下一篇

情感强度回复生成模型

马志强,周钰童,贾文超,许璧麒,王春喻   

  1. 1. 内蒙古工业大学 数据科学与应用学院,呼和浩特 010080
    2. 内蒙古工业大学 内蒙古自治区基于大数据的软件服务工程技术研究中心,呼和浩特 010080
  • 出版日期:2024-05-01 发布日期:2024-04-29

Emotional Intensity Response Generation Model

MA Zhiqiang,ZHOU Yutong, JIA Wenchao, XU Biqi, WANG Chunyu   

  1. 1. College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China
    2. Inner Mongolia Autonomous Region Engineering and Technology Research Centre of Big Data Based Software Service, Inner Mongolia University of Technology, Hohhot 010080, China
  • Online:2024-05-01 Published:2024-04-29

摘要: 情感对话生成模型在回复生成中未考虑情感强度因素,导致生成回复的情感表达存在波动不恰当性,降低用户交互体验。受情绪心理学中情感强度工作的启发,提出一种情感强度回复生成模型(EIRGM)。模型包括情感强度预测单元、语境编码模块和情感强度回复生成单元,其中情感强度预测单元为回复语句提供情感类别和情感强度,语境编码模块单元为回复语句提供内容基础,情感强度回复生成单元构成用于回复语句中情感和强度的表达。实验以NLPCC2018开放域对话数据集为基础,开展了情感恰当性、情感强度恰当性、内容关联性以及对话持续性等实验。实验结果表明,EIRGM在情感恰当性方面与最优模型相差不大,在情感强度恰当性和对话持续性方面与最优模型相比分别提升4.1个百分点和0.8个百分点,表明了EIRGM模型在提升情感强度表达恰当性同时也提高了用户交互意愿。

关键词: 情感强度, 情感类别, 情感对话, 回复生成, 情感表达

Abstract: Emotional dialogue generation models do not consider the emotional intensity factor in response generation, which leads to the inappropriateness of the emotional expression in generated response, and reduces the user interaction experience. Inspired by the work of emotional intensity in emotional psychology, this paper proposes an emotional intensity response generation model (EIRGM), which includes an emotional intensity prediction unit, a context encoding module and an emotional intensity response generation unit. An emotional intensity prediction unit provides emotion categories and emotional intensity for reply sentences; a context encoding module provides content basis for response; an emotional intensity response generation unit is used to express the emotion and intensity in response. Based on the NLPCC2018 open-domain dialogue dataset, experiments are carried out in terms of emotional appropriateness, emotional intensity appropriateness, content relevance, and dialogue persistence. Experimental results show that EIRGM is not much different from the optimal model in terms of emotional appropriateness, and EIRGM is improved by 4.1 percentage points and 0.8 percentage points compared with the optimal model in terms of emotional intensity appropriateness and dialogue persistence, respectively. It shows that the model improves the emotional intensity appropriateness of emotional expression, and improves the user’s willingness to interact.

Key words: emotional intensity, emotion categories, emotional dialogue, response generation, emotional expression