[1] MARION P, NOWAK P, PICCINNO F. Structured context and high-coverage grammar for conversational question answering over knowledge graphs[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Nov 7-11, 2021. Stroudsburg: ACL, 2021: 8813-8829.
[2] 歹杰, 李青山, 褚华, 等. 突破智慧教育: 基于图学习的课程推荐系统[J]. 软件学报, 2022, 33(10): 3656-3672.
DAI J, LI Q S, CHU H, et al. Breakthrough in smart education: course recommendation system based on graph learning[J]. Journal of Software, 2022, 33(10): 3656-3672.
[3] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web, Banff, May 8-12, 2007. New York: ACM, 2007: 697-706.
[4] MILLER G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
[5] BOLLACKER K D, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, Jun 10-12, 2008. New York: ACM, 2008: 1247-1250.
[6] WEST R, GABRILOVICH E, MURPHY K, et al. Knowledge base completion via search-based question answering[C]//Proceedings of the 23rd International World Wide Web Conference, Seoul, Apr 7-11, 2014. New York: ACM, 2014: 515-526.
[7] HEINDORF S, POTTHAST M, STEIN B, et al. Vandalism detection in wikidata[C]//Proceedings of the 25th ACM International Conference on Information and Knowledge Management, Indianapolis, Oct 24-28, 2016. New York: ACM, 2016: 327-336.
[8] STANOVSKY G, MICHAEL J, ZETTLEMOYER L, et al. Supervised open information extraction[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Menlo Park: AAAI, 2018: 885-895.
[9] 彭敏, 黄婷, 田纲, 等. 聚合邻域信息的联合知识表示模型[J]. 中文信息学报, 2021, 35(5): 46-54.
PENG M, HUANG T, TIAN G, et al. Neighborhood aggrega-tion for knowledge graph representation[J]. Journal of Chinese Information Processing, 2021, 35(5): 46-54.
[10] YANG H, LIU J F. Knowledge graph representation learning as groupoid: unifying TransE, RotatE, QuatE, ComplEx[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 2311-2320.
[11] ALLEN C, BALAZEVIC I, HOSPEDALES T. Interpreting knowledge graph relation representation from word embed-dings[C]//Proceedings of the 9th International Conference on Learning Representations, Austria, May 3-7, 2021:1-16.
[12] XIE R B, LIU Z Y, LIN F, et al. Does William Shakespeare really write Hamlet? Knowledge representation learning with confidence[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 4954-4961.
[13] LIN Y K, LIU Z Y, LUAN H B, et al. Modeling relation paths for representation learning of knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 705-714.
[14] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems 2013, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2787-2795.
[15] NAYYERI M, VAHDATI S, AYKUL C, et al. 5* knowledge graph embeddings with projective transformations[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 9064- 9072.
[16] MANAGO M, KODRATOFF Y. Noise and knowledge acquisition[C]//Proceedings of the 10th International Joint Conference on Artificial Intelligence, Milan, Aug 23-28, 1987: 348-354.
[17] HEINDORF S, POTTHAST M, STEIN B, et al. Towards vandalism detection in knowledge bases: corpus construction and analysis[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Aug 9-13, 2015. New York: ACM, 2015: 831-834.
[18] MELO A, PAULHEIM H. Detection of relation assertion errors in knowledge graphs[C]//Proceedings of the 2017 Knowledge Capture Conference, Austin, Dec 4-6, 2017. New York: ACM, 2017: 22.
[19] HOFFART J, SUCHANEK F M, BERBERICH K, et al. YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia[J]. Artificial Intelligence, 2013, 194: 28-61.
[20] TANON T P, VRANDECIC D, SCHAFFERT S, et al. From freebase to Wikidata: the great migration[C]//Proceedings of the 25th International Conference on World Wide Web, Montreal, Apr 11-15, 2016. New York: ACM, 2016: 1419-1428.
[21] JIA S B, XIANG Y, CHEN X J, et al. Triple trustworthiness measurement for knowledge graph[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 2865-2871.
[22] HONG Y, BU C Y, WU X D. High-quality noise detection for knowledge graph embedding with rule-based triple confidence[C]//LNCS 13031: Proceedings of the 18th Pacific Rim International Conference on Artificial Intelligence, Hanoi, Nov 8-12, 2021. Cham: Springer, 2021: 572-585.
[23] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 601-610.
[24] LI X, TAHERI A, TU L F, et al. Commonsense knowledge base completion[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 1445-1455.
[25] 宁原隆, 周刚, 卢记仓, 等. 一种融合关系路径与实体描述信息的知识图谱表示学习方法[J]. 计算机研究与发展, 2022, 59(9): 1966-1979.
NING Y L, ZHOU G, LU J C, et al. A representation learning method of knowledge graph integrating relation path and entity description information[J]. Journal of Computer Research and Development, 2022, 59(9): 1966-1979.
[26] ZHANG Y Q, YAO Q M, DAI W Y, et al. AutoSF: searching scoring functions for knowledge graph embedding[C]//Proceedings of the 36th IEEE International Conference on Data Engineering, Dallas, Apr 20-24, 2020. Piscataway:IEEE, 2020: 433-444.
[27] MIKOLOV T, YIH S W, ZWEIG G. Linguistic regularities in continuous space word representations[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, Jun 9-14, 2013. Menlo Park: AAAI, 2013: 746-751.
[28] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omnipress, 2011: 809-816.
[29] YANG B S, YIH S W, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-12.
[30] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 2071-2080.
[31] SOCHER R, CHEN D Q, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 926-934.
[32] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Pro-ceedings of the 32nd AAAI Conference on Artificial Intel-ligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 1811-1818.
[33] NGUYEN T D, NGUYEN D Q, PHUNG D. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Menlo Park: AAAI, 2018: 327-333.
[34] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Quebec City, Jul 27 -31, 2014. Menlo Park: AAAI, 2014: 1112-1119.
[35] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 2181-2187.
[36] CAO Z S, XU Q Q, YANG Z Y, et al. Dual quaternion knowledge graph embeddings[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 6894-6902.
[37] NIU G L, LI B, ZHANG Y F, et al. AutoETER: automated entity type representation for knowledge graph embedding[C]//Findings of the Association for Computational Linguistics, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 1172-1181.
[38] NIU G L, ZHANG Y F, LI B, et al. Rule-guided composi-tional representation learning on knowledge graphs[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 2950-2958.
[39] SHAO T Y, LI X Y, ZHAO X, et al. DSKRL: a dissimilarity-support-aware knowledge representation learning framework on noisy knowledge graph[J]. Neurocomputing, 2021, 461: 608-617. |