计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (3): 574-596.DOI: 10.3778/j.issn.1673-9418.2305019
张西硕,柳林,王海龙,苏贵斌,刘静
出版日期:
2024-03-01
发布日期:
2024-03-01
ZHANG Xishuo, LIU Lin, WANG Hailong, SU Guibin, LIU Jing
Online:
2024-03-01
Published:
2024-03-01
摘要: 实体关系抽取作为知识图谱构建的基础得到了越来越多研究人员的关注。实体关系抽取能够自动、准确地从大量数据中获取知识,并以结构化形式表示和存储。因此,实体关系抽取的正确性直接影响到知识图谱构建的准确性和后续知识图谱应用效果。然而,针对复杂结构、开放领域、多语言、多模态、小样本数据和实体关系联合抽取等不同研究热点,现存的实体关系抽取方法仍存在一些局限性。基于当前实体关系抽取研究热点领域将实体关系抽取分为复杂结构研究领域、开放领域、多语言研究领域、多模态研究领域、小样本数据研究领域和实体关系联合抽取六个方面,将每个方面按照具体问题进行分类并列举出一些解决方法。不仅系统梳理了每一个类别当前存在的问题和解决方法,还归纳了每个类别的研究成果,并从定量分析和定性分析两个维度,详细地分析了每个方法的优点和缺点。最后,总结了当前热点领域中待解决的问题,同时展望了知识图谱中实体关系抽取方法未来的发展趋势。
张西硕, 柳林, 王海龙, 苏贵斌, 刘静. 知识图谱中实体关系抽取方法研究[J]. 计算机科学与探索, 2024, 18(3): 574-596.
ZHANG Xishuo, LIU Lin, WANG Hailong, SU Guibin, LIU Jing. Survey of Entity Relationship Extraction Methods in Knowledge Graphs[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 574-596.
[1] SINGHAL A. Introducing the knowledge graph: things, not strings[J]. Official Google Blog, 2012, 5(16): 3. [2] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514. [3] MATUSZEK C, WITBROCK M, CABRAL J, et al. An introduction to the syntax and content of Cyc[C]//Proceedings of the 2006 AAAI Spring Symposium on Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering, Stanford, Mar 27-29, 2006: 44-49. [4] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a Web of open data[C]//Proceedings of the 6th International Semantic Web Conference, the 2nd Asian Semantic Web Conference, Busan, Nov 11-15, 2007. Berlin, Heidelberg: Springer, 2007: 722-735. [5] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 601-610. [6] MILLER G A. Word Net: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. [7] REBELE T, SUCHANEK F, HOFFART J, et al. YAGO: a multilingual knowledge base from Wikipedia, Wordnet, and Geonames[C]//Proceedings of the 2016 International Semantic Web Conference, Kobe, Oct 17-21, 2016. Cham: Springer, 2016: 177-185. [8] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250. [9] XU B, XU Y, LIANG J, et al. CN-DBpedia: a never-ending Chinese knowledge extraction system[C]//Proceedings of the 2017 International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Cham: Springer, 2017: 428-438. [10] 赵晔辉, 柳林, 王海龙, 等. 知识图谱推荐系统研究综述[J].计算机科学与探索, 2023, 17(4): 771-791. ZHAO Y H, LIU L, WANG H L, et al. Survey of knowledge graph recommendation system research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 771-791. [11] 黄恒琪, 于娟, 廖晓, 等. 知识图谱研究综述[J]. 计算机系统应用, 2019, 28(6): 1-12. HUANG H Q, YU J, LIAO X, et al. Review on knowledge graphs[J]. Computer Systems & Applications, 2019, 28(6): 1-12. [12] WU X, CHEN H, WU G, et al. Knowledge engineering with big data[J]. IEEE Intelligent Systems, 2015, 30(5): 46-55. [13] 郭喜跃, 何婷婷. 信息抽取研究综述[J]. 计算机科学, 2015,42(2): 14-17. GUO X Y, HE T T. Survey about research on information extraction[J]. Computer Science, 2015, 42(2): 14-17. [14] WU X, ZHU X, WU G Q, et al. Data mining with big data[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 26(1): 97-107. [15] CHINCHOR N. MUC-7 named entity task definition, version 3.5[C]//Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29-May 1, 1998. Stroudsburg: ACL, 1998. [16] 郭喜跃. 面向开放领域文本的实体关系抽取[D]. 武汉: 华中师范大学, 2016. GUO X Y. Entity relation extraction for open domain texts [D]. Wuhan: Huazhong Normal University, 2016. [17] 赵山, 罗睿, 蔡志平. 中文命名实体识别综述[J]. 计算机科学与探索, 2022, 16(2): 296-304. ZHAO S, LUO R, CAI Z P. Survey of Chinese named entity recognition[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 296-304. [18] 张吉祥, 张祥森, 武长旭, 等. 知识图谱构建技术综述[J]. 计算机工程, 2022, 48(3): 23-37. ZHANG J X, ZHANG X S, WU C X, et al. Survey of knowledge graph construction techniques[J]. Computer Engineering, 2022, 48(3): 23-37. [19] 姜磊, 刘琦, 赵肄江, 等. 面向知识图谱的信息抽取技术综述[J]. 计算机系统应用, 2022, 31(7): 46-54. JIANG L, LIU Q, ZHAO Y J, et al. Review on information extraction techniques for knowledge graph[J]. Computer Systems & Applications, 2022, 31(7): 46-54. [20] 于浏洋, 郭志刚, 陈刚, 等. 面向知识图谱构建的知识抽取技术综述[J]. 信息工程大学学报, 2020, 21(2): 227-235. YU L Y, GUO Z G, CHEN G, et al. Summary of knowledge graph construction oriented knowledge extraction technology[J]. Journal of Information Engineering University, 2020, 21(2): 227-235. [21] 贺昭荣. 面向复杂文本结构的关系抽取研究[D]. 桂林: 桂林电子科技大学, 2021. HE Z R. Research on Chinese relation extraction for complex text structures[D]. Guilin: Guilin University of Electronic Technology, 2021. [22] ZENG D, SUN C, LIN L, et al. LSTM-CRF for drug-named entity recognition[J]. Entropy, 2017, 19(6): 283. [23] FINKEL J R, MANNING C D. Nested named entity recognition[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, Singapore, Aug 6-7, 2009. Stroudsburg: ACL, 2009: 141-150. [24] 李雁群, 何云琪, 钱龙华, 等. 中文嵌套命名实体识别语料库的构建[J]. 中文信息学报, 2018, 32(8): 19-26. LI Y Q, HE Y Q, QIAN L H, et al. Chinese nested name entity recognition corpus construction[J]. Journal of Chinese Information Processing, 2018, 32(8): 19-26. [25] WANG B, LU W. Neural segmental hypergraphs for overlapping mention recognition[J]. arXiv:1810.01817, 2018. [26] WANG B, LU W, WANG Y, et al. A neural transition-based model for nested mention recognition[J]. arXiv:1810.01808, 2018. [27] LIN H, LU Y, H X, et al. Sequence-to-nuggets: nested entity mention detection via anchor-region networks[J]. arXiv:1906.03783, 2019. [28] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[J]. arXiv:1603.01360, 2016. [29] QIU X, SUN T, XU Y, et al. Pre-trained models for natural language processing: a survey[J]. Science China Technological Sciences, 2020, 63(10): 1872-1897. [30] LI X, FENG J, MENG Y, et al. A unified MRC framework for named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 5849-5859. [31] LU Y, LIU Q, DAI D, et al. Unified structure generation for universal information extraction[J]. arXiv:2203.12277, 2022. [32] SONG L, ZHANG Y, WANG Z, et al. N-ary relation extraction using graph state LSTM[J]. arXiv:1808.09101, 2018. [33] 江雅仁, 乐小虬. 一对多实体关系少样本持续学习方法研究[J]. 数据分析与知识发现, 2021, 5(8): 45-53. JIANG Y R, LE X Q. Continual learning for one-to-many entity relationship generation with small samples[J]. Data Analysis and Knowledge Discovery, 2021, 5(8): 45-53. [34] JIA R, WONG C, POON H. Document-level N-ary relation extraction with multiscale representation learning[J]. arXiv:1904.02347, 2019. [35] YAO Y, YE D, LI P, et al. DocRED: a large-scale document-level relation extraction dataset[J]. arXiv:1906.06127, 2019. [36] NAN G, GUO Z, SEKULI? I, et al. Reasoning with latent structure refinement for document-level relation extraction[J]. arXiv:2005.06312, 2020. [37] ZENG S, XU R, CHANG B, et al. Double graph based reasoning for document-level relation extraction[J]. arXiv:2009.13752, 2020. [38] HUANG K, WANG G, MA T, et al. Entity and evidence guided relation extraction for docred[J]. arXiv:2008.12283, 2020. [39] ZHOU W, HUANG K, MA T, et al. Document-level relation extraction with adaptive thresholding and localized context pooling[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 14612-14620. [40] WANG F, LI F, FEI H, et al. Entity-centered cross-document relation extraction[J]. arXiv:2210.16541, 2022. [41] YAO Y, DU J, LIN Y, et al. CodRED: a cross-document relation extraction dataset for acquiring knowledge in the wild[C]//Proceedings of the 2021 Conference on Empirical Me-thods in Natural Language Processing, Nov 7-11, 2021. Strou-dsburg: ACL, 2021: 4452-4472. [42] NAYAK T, NG H T. A hierarchical entity graph convolutional network for relation extraction across documents[C]//Proceedings of the 2021 International Conference on Recent Advances in Natural Language Processing, Sep 1-3, 2021:1022-1030. [43] ZHANG Z, ELFARDY H, DREYER M, et al. Enhancing multi-document summarization with cross-document graph-based information extraction[C]//Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, Dubrovnik, May 2-6, 2023. Stroudsburg: ACL, 2023: 1688-1699. [44] CUI L, YANG D, YU J, et al. Refining sample embeddings with relation prototypes to enhance continual relation extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 232-243. [45] LI X, YIN F, SUN Z, et al. Entity-relation extraction as multi-turn question answering[J]. arXiv:1905.05529, 2019. [46] YU D, SUN K, CARDIE C, et al. Dialogue-based relation extraction[J]. arXiv:2004.08056, 2020. [47] ZHAO T, YAN Z, CAO Y, et al. Enhancing dialogue-based relation extraction by speaker and trigger words prediction[C]//Findings of the Association for Computational Linguistics, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 4580-4585. [48] 周滋楷. 面向开放领域文本的实体关系抽取技术研究[D]. 广州: 华南理工大学, 2019. ZHOU Z K. Research on entity relation extraction techniques for open domain texts[D]. Guangzhou: South China University of Technology, 2019. [49] 赵康. 面向开放领域的实体关系抽取方法研究[D]. 石家庄: 河北科技大学, 2023. ZHAO K. Research on entity relation extraction methods for open domain[D]. Shijiazhuang: Hebei University of Science and Technology, 2023. [50] YANG J, WANG H, TANG Y, et al. Incorporating lexicon and character glyph and morphological features into Bi-LSTM-CRF for Chinese medical NER[C]//Proceedings of the 2021 IEEE International Conference on Consumer Electronics and Computer Engineering, Guangzhou, Jan 15-17, 2021. Piscataway: IEEE, 2021: 12-17. [51] CHOI E, LEVY O, CHOI Y, et al. Ultra-fine entity typing[J]. arXiv:1807.04905, 2018. [52] ONOE Y, BORATKO M, MCCALLUM A, et al. Modeling fine-grained entity types with box embeddings[J]. arXiv:2101.00345, 2021. [53] XIN J, LIN Y, LIU Z, et al. Improving neural fine-grained entity typing with knowledge attention[C]//Proceedings of the 2018 AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5997-6004. [54] DAI H, DU D, LI X, et al. Improving fine-grained entity typing with entity linking[J]. arXiv:1909.12079, 2019. [55] REN X, HE W, QU M, et al. Afet: automatic fine-grained entity typing by hierarchical partial-label embedding[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-5, 2016. Stroudsburg: ACL, 2016: 1369-1378. [56] ABHISHEK A, ANAND A, AWEKAR A. Fine-grained entity type classification by jointly learning representations and label embeddings[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Apr 3-7, 2017. Stroudsburg: ACL, 2017: 797-807. [57] XU P, BARBOSA D. Neural fine-grained entity type classification with hierarchy-aware loss[J]. arXiv:1803.03378, 2018. [58] LIU Q, LIN H, XIAO X, et al. Fine-grained entity typing via label reasoning[J]. arXiv:2109.05744, 2021. [59] YATES A, BANKO M, BROADHEAD M, et al. Textrunner: open information extraction on the web[C]//Proceedings of the 2007 Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, Rochester, Apr 23-25, 2007. Stroudsburg: ACL, 2007: 25-26. [60] WU F, WELD D S. Open information extraction using Wikipedia[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Jul 11-16, 2010. Stroudsburg: ACL, 2010: 118-127. [61] FADER A, SODERLAND S, ETZIONI O. Identifying relations for open information extraction[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, Edinburgh, Jul 27-31, 2011. Stroudsburg: ACL, 2011: 1535-1545. [62] MAUSAM, SCHMITZ M, SODERLAND S, et al. Open language learning for information extraction[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Jul 12-14, 2012. Stroudsburg: ACL, 2012: 523-534. [63] AKBIK A, L?SER A. Kraken: N-ary facts in open information extraction[C]//Proceedings of the 2012 Joint Workshop on Automatic Knowledge Base Construction and Web-Scale Knowledge Extraction, Montréal, Jun 7-8, 2012. Stroudsburg: ACL, 2012: 52-56. [64] XAVIER C C, DE L V L S. Boosting open information extraction with noun-based relations[C]//Proceedings of the 9th International Conference on Language Resources and Evaluation, Reykjavik, May 26-31, 2014: 96-100. [65] DEL C L, GEMULLA R. Clausie: clause-based open information extraction[C]//Proceedings of the 22nd International Conference on World Wide Web, New York, May 13-17, 2013. New York: ACM, 2013: 355-366. [66] FARUQUI M, KUMAR S. Multilingual open relation extraction using cross-lingual projection[J]. arXiv:1503.06450, 2015. [67] SONG S, SUN Y, DI Q. Multiple order semantic relation extraction[J]. Neural Computing and Applications, 2019, 31: 4563-4576. [68] PETRONI F, DEL C L, GEMULLA R. CORE: context-aware open relation extraction with factorization machines[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015.Stroudsburg: ACL, 2015: 1763-1773. [69] QIU L K, ZHAN G Y. ZERO: a syntax-based system for Chinese open relation extraction[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 26-28, 2014. Stroudsburg: ACL, 2014: 1870-1880. [70] 秦兵, 刘安安, 刘挺. 无指导的中文开放式实体关系抽取[J]. 计算机研究与发展, 2015, 52(5): 1029-1035. QIN B, LIU A A, LIU T. Unsupervised Chinese open entity relation extraction[J]. Journal of Computer Research and Development, 2015, 52(5): 1029-1035. [71] GUO X, HE T. Leveraging Chinese encyclopedia for weakly supervised relation extraction[C]//Proceedings of the 5th Joint International Conference on Semantic Technology, Yichang, Nov 11-13, 2015. Cham: Springer, 2016: 127-140. [72] JIA S B, E S J, LI M Z, et al. Chinese open relation extraction and knowledge base establishment[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2018, 17(3): 1-22. [73] 李颖, 郝晓燕, 王勇. 中文开放式多元实体关系抽取[J]. 计算机科学, 2017, 44(S1): 80-83. LI Y, HAO X Y, WANG Y. N-ary Chinese open entity-relation extraction[J]. Computer Science, 2017, 44(S1): 80-83. [74] 姚贤明, 甘健侯, 徐坚. 面向中文开放领域的多元实体关系抽取研究[J]. 智能系统学报, 2019, 14(3): 597-604. YAO X M, GAN J H, XU J. Chinese open domain oriented n-ary entity relation extraction[J]. CAAI Transactions on Intelligent Systems, 2019, 14(3): 597-604. [75] 赵山. 基于深度学习的实体关系抽取关键技术研究[D]. 长沙: 国防科技大学, 2021. ZHAO S. Research on key technologies of entity relation extraction based on deep learning[D]. Changsha: National University of Defense Technology, 2021. [76] TEDESCHI S, MAIORCA V, CAMPOLUNGO N, et al. WikiNEuRal: combined neural and knowledge-based silver data creation for multilingual NER[C]//Findings of the Association for Computational Linguistics: the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Nov 7-9, 2021. Stroudsburg: ACL, 2021: 2521-2533. [77] LIU L, DING B, BING L, et al. MulDA: a multilingual data augmentation framework for low-resource cross-lingual NER[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 5834-5846. [78] SHAFFER K. Language clustering for multilingual named entity recognition[C]//Findings of the Association for Computational Linguistics: the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Nov 7-9, 2021. Stroudsburg: ACL, 2021: 40-45. [79] FAN Y, LIANG Y, MUZIO A, et al. Discovering representation sprachbund for multilingual pre-training[J]. arXiv:2109.00271, 2021. [80] WANG X, JIANG Y, BACH N, et al. Structure-level knowledge distillation for multilingual sequence labeling[J]. arXiv:2004.03846, 2020. [81] LIN Y, LIU Z, SUN M. Neural relation extraction with multi-lingual attention[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 34-43. [82] DUAN X, YIN M, ZHANG M, et al. Zero-shot cross-lingual abstractive sentence summarization through teaching generation and attention[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 3162-3172. [83] 孙凌浩. 基于跨语言迁移学习的实体关系抽取算法研究[D]. 合肥: 中国科学技术大学, 2020. SUN L H. Research on entity relation extraction based on cross-lingual transfer learning[D]. Hefei: University of Science and Technology of China, 2020. [84] 吴婧, 杨百龙, 田罗庚. 基于注意力迁移的跨语言关系抽取方法[J]. 计算机应用研究, 2022, 39(2): 417-423. WU J, YANG B L, TIAN L G. Cross language relationship extraction method based on attention transfer[J]. Application Research of Computers, 2022, 39(2): 417-423. [85] ZHANG D, WEI S, LI S, et al. Multi-modal graph fusion for named entity recognition with targeted visual guidance[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 14347-14355. [86] SUI D, TIAN Z, CHEN Y, et al. A large-scale chinese multimodal NER dataset with speech clues[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 2807-2818. [87] WU Y, BAMMAN D, RUSSELL S. Adversarial training for relation extraction[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copen-hagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 1778-1783. [88] ZHENG C, WU Z, FENG J, et al. MNRE: a challenge multimodal dataset for neural relation extraction with visual evidence in social media posts[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo, Shenzhen, Jul 5-9, 2021. Piscataway: IEEE, 2021: 1-6. [89] WAN H, ZHANG M, DU J, et al. FL-MSRE: a few-shot learning based approach to multimodal social relation extraction[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 13916-13923. [90] 楼婧蕾. 基于多模态信息的物体间关系检测研究[D]. 南京: 南京邮电大学, 2022. LOU J L. Research on multimodal information oriented relationship detection[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022. [91] XU P, BARBOSA D. Neural fine-grained entity type classification with hierarchy-aware loss[J]. arXiv:1803.03378, 2018. [92] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 4077-4087. [93] SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 8-23, 2018. Washington:IEEE Computer Society, 2018: 1199-1208. [94] GENG R, LI B, LI Y, et al. Induction networks for few-shot text classification[J]. arXiv:1902.10482, 2019. [95] GONG J, ELDARDIRY H. Zero-shot learning for relation extraction[J]. arXiv:2011.07126, 2020. [96] GHADDAR A, LANGLAIS P. Winer: a Wikipedia annotated corpus for named entity recognition[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing, Taipei, China, Dec 1, 2017: 413-422. [97] DIXIT M, KWITT R, NIETHAMMER M, et al. AGA: attribute-guided augmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7455-7463. [98] XIE Q, LUONG M T, HOVY E, et al. Self-training with noisy student improves ImageNet classification[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 10687-10698. [99] KATIYAR A, CARDIE C. Investigating LSTMs for joint extraction of opinion entities and relations[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 1-12, 2016. Stroudsburg: ACL, 2016: 919-929. [100] MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[J]. arXiv:1601.00770, 2016. [101] KATIYAR A, CARDIE C. Going out on a limb:joint extraction of entity mentions and relations without dependency trees[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 917-928. [102] EBERTS M, ULGES A. Span-based joint entity and relation extraction with transformer pre-training[J]. arXiv:1909.07755, 2019. [103] ZHENG S, WANG F, BAO H, et al. Joint extraction of entities and relations based on a novel tagging scheme[J]. arXiv:1706.05075, 2017. [104] BEKOULIS G, DELEU J, DEMEESTER T, et al. Joint entity recognition and relation extraction as a multi-head selection problem[J]. Expert Systems with Applications, 2018, 114: 34-45. [105] FU T J, LI P H, MA W Y. GraphRel: modeling text as relational graphs for joint entity and relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 1409-1418. [106] WEI Z, SU J, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction[J]. arXiv:1909.03227, 2019. [107] LU Y, LIU Q, DAI D, et al. Unified structure generation for universal information extraction[J]. arXiv:2203.12277, 2022. [108] JI B, LI S, GAN S, et al. Few-shot named entity recognition with entity-level prototypical network enhanced by dispersedly distributed prototypes[J]. arXiv:2208.08023, 2022. [109] WANG J, WANG C, TAN C, et al. SpanProto: a two-stage span-based prototypical network for few-shot named entity recognition[J]. arXiv:2210.09049, 2022. [110] WADHWA S, AMIR S, WALLACE B C. Revisiting relation extraction in the era of large language models[J]. arXiv:2305.05003, 2023. [111] WANG S, SUN X, LI X, et al. GPT-NER: named entity recog-nition via large language models[J]. arXiv:2304.10428, 2023. [112] WAN Z, CHENG F, MAO Z, et al. GPT-RE: in-context learning for relation extraction using large language models[J]. arXiv:2305.02105, 2023. |
[1] | 常钰, 王钢, 朱鹏, 孔令飞, 何京恒. 工业互联网安全知识图谱构建研究综述[J]. 计算机科学与探索, 2024, 18(2): 279-300. |
[2] | 李冬梅, 罗斯斯, 张小平, 许福. 命名实体识别方法研究综述[J]. 计算机科学与探索, 2022, 16(9): 1954-1968. |
[3] | 陈剑南, 杜军平, 薛哲, 寇菲菲. 基于多重注意力的金融事件大数据精准画像[J]. 计算机科学与探索, 2021, 15(7): 1237-1244. |
[4] | 李艳娟,臧明哲,刘晓燕,刘扬,郭茂祖. 结合注意力机制和本体的远程监督关系抽取[J]. 计算机科学与探索, 2020, 14(9): 1554-1562. |
[5] | 王红,李晗,李浩飞. 民航突发事件领域本体关系提取方法的研究[J]. 计算机科学与探索, 2020, 14(2): 285-293. |
[6] | 薛丽娟,席梦隆,王梦婕,王昊奋,阮彤. 基于规则推理引擎的实体关系抽取研究[J]. 计算机科学与探索, 2016, 10(9): 1310-1319. |
[7] | 商 玥, 林鸿飞, 杨志豪. 利用语义关系抽取生成生物医学文摘的算法[J]. 计算机科学与探索, 2011, 5(11): 1027-1036. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 288
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 359
|
|
|||||||||||||||||||||||||||||||||||||||||||||