[1] KHAN M, ARIF R B, SIDDIQUE M, et al. Study and obser-vation of the variation of accuracies of KNN, SVM, LMNN, ENN algorithms on eleven different datasets from UCI machine learning repository[C]//Proceedings of the 2018 4th Interna-tional Conference on Electrical Engineering and Information and Communication Technology, Seoul, Jun 8-10, 2018. Pis-cataway: IEEE, 2018: 124-129.
[2] TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Mining multi-label data[M]//Data Mining and Knowledge Discovery Hand-book. Boston: Springer, 2010: 667-685.
[3] YOGARAJAN V, MONTIEL J, SMITH T, et al. Transformers for multi-label classification of medical text: an empirical comparison[C]//LNCS 12721: Proceedings of the 19th Inter-national Conference on Artificial Intelligence in Medicine, Jun 15-18, 2021. Cham: Springer, 2021: 114-123.
[4] 吴欣, 徐红, 林卓胜, 等. 深度学习在舌象分类中的研究综述[J]. 计算机科学与探索, 2023, 17(2): 303-323.
WU X, XU H, LIN Z S, et al. Review of deep learning in classification of tongue image[J]. Journal of Frontiers of Com-puter Science and Technology, 2023, 17(2): 303-323.
[5] LI T, WU C, MA Y. Multi-label constitution identification based on tongue image in traditional Chinese medicine[C]//Proceedings of the 2021 China Automation Congress, Beijing, Oct 22-24, 2021. Piscataway: IEEE, 2021: 1617-1622.
[6] SANDEN C, ZHANG J Z. Enhancing multi-label music genre classification through ensemble techniques[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, Jul 25-29, 2011. New York: ACM, 2011: 705-714.
[7] TSOUMAKAS G, KATAKIS I. Multi-label classification: an overview[J]. International Journal of Data Warehousing and Mining, 2007, 3(3): 1-13.
[8] ZHANG M L, ZHOU Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 26(8): 1819-1837.
[9] MOYANO J, GIBAJA E, CIOS K, et al. Review of ensembles of multi-label classifiers: models, experimental study and prospects[J]. Information Fusion, 2018, 44: 33-45.
[10] 武红鑫, 韩萌, 陈志强,等. 监督和半监督学习下的多标签分类综述[J]. 计算机科学, 2022, 49(8): 12-25.
WU H X, HAN M, CHEN Z Q, et al. Survey of multi-label classification based on supervised and semi-supervised lear-ning[J]. Computer Science, 2022, 49(8): 12-25.
[11] BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771.
[12] READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[J]. Machine Learning, 2011, 85(3): 333-359.
[13] TSOUMAKAS G, KATAKIS I, VLAHAVAS I P. Random k-labelsets for multi-label classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(7): 1079-1089.
[14] CLARE A, KING R D. Knowledge discovery in multi-label phenotype data[C]//LNCS 2168: Proceedings of the 5th Euro-pean Conference on Principles of Data Mining and Knowledge Discovery, Freiburg, Sep 3-5, 2001. Cham: Springer, 2001: 42-53.
[15] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, Dec 3-8, 2001. Cambridge: MIT Press, 2001: 681-687.
[16] ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048.
[17] KIM Y. Convolutional neural networks for sentence classifi-cation[J]. arXiv:1408.5882, 2014.
[18] JOHNSON R, TONG Z. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Lingui-stics, Vancouver, Jul 30-Apr 4, 2017. Stroudsburg: ACL, 2017: 562-570.
[19] WEI Y C, XIA W, LIN M, et al. HCP: a flexible CNN framework for multi-label image classification[J]. IEEE Tran-sactions on Software Engineering, 2016, 38(9): 1901-1907.
[20] YANG W, LI J, FUKUMOTO F, et al. HSCNN: a hybrid-siamese convolutional neural network for extremely imba-lanced multi-label text classification[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 6716-6722.
[21] TAN Z, CHEN J, KANG Q, et al. Dynamic embedding projection-gated convolutional neural networks for text classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(3): 973-982.
[22] YAZICI V O, GONZALEZ-GARCIA A, RAMISA A, et al. Orderless recurrent models for multi-label classification[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Washington: IEEE Computer Society, 2020: 13440-13449.
[23] HU J, KANG X, NISHIDE S, et al. Text multi-label senti-ment analysis based on Bi-LSTM[C]//Proceedings of the 2019 IEEE 6th International Conference on Cloud Computing and Intelligence Systems, Singapore, Sep 25-27, 2019. Piscataway: IEEE, 2019: 16-20.
[24] LIU H, CHEN G, LI P, et al. Multi-label text classification via joint learning from label embedding and label correla-tion[J]. Neurocomputing, 2021, 460: 385-398.
[25] CHEN Z, REN J. Multi-label text classification with latent word-wise label information[J]. Applied Intelligence, 2020, 51(2): 966-979.
[26] XIAO Y Q, LI Y, YUAN J, et al. History-based attention in Seq2Seq model for multi-label text classification[J]. Know-ledge-Based Systems, 2021, 224: 107094.
[27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9 2017. Red Hook: Curran Associates, 2017: 5998-6008.
[28] LIU J, CHANG W C, WU Y, et al. Deep learning for extreme multi-label text classification[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Aug 7-11 2017. New York: ACM, 2017: 115-124.
[29] CHANG W C, YU H F, ZHONG K, et al. Taming pretrained transformers for extreme multi-label text classification[C]//Proceedings of the 26th ACM SIGKDD International Confe-rence on Knowledge Discovery and Data Mining, Jul 6-10, 2020. New York: ACM, 2020: 3163-3171.
[30] JIANG T, WANG D, SUN L, et al. LightXML: transformer with dynamic negative sampling for high-performance ext-reme multi-label text classification[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 33rd Conference on Innovative Applications of Artificial Intelli-gence, the 11th Symposium on Educational Advances in Arti-ficial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 7987-7994.
[31] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understan-ding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Lingui-stics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186.
[32] JIN Z, LAI X, CAO J. Multi-label sentiment analysis base on BERT with modified TF-IDF[C]//Proceedings of the 2020 IEEE International Symposium on Product Compliance Engi-neering-Asia, Chongqing, Nov 6-8, 2020. Piscataway: IEEE, 2020: 1-6.
[33] KIM D, KOO J, KIM U M. EnvBERT: multi-label text classi-fication for imbalanced, noisy environmental news data[C]//Proceedings of the 2021 15th International Conference on Ubiquitous Information Management and Communication, Seoul, Jan 4-6, 2021. Piscataway: IEEE, 2021: 1-8.
[34] 林森, 刘蓓蓓, 李建文, 等. 基于BERT迁移学习模型的地震灾害社交媒体信息分类研究[J/OL]. 武汉大学学报(信息科学版) (2022-09-05)[2023-03-18]. https://doi.org/10.13203/j.whugis20220167.
LIN S, LIU B B, LI J W, et al. Social media information classification of earthquake disasters based on BERT transfer learning model[J/OL]. Geomatics and Information Science of Wuhan University (2022-09-05)[2023-03-18]. https://doi.org/10.13203/j.whugis20220167.
[35] LU G, LIU Y, WANG J, et al. CNN-BiLSTM-Attention: a multi-label neural classifier for short texts with a small set of labels[J]. Information Processing & Management, 2023, 60(3): 103320.
[36] SNOEK C G M, WORRING M, VAN GEMERT J C, et al. The challenge problem for automated detection of 101 seman-tic concepts in multimedia[C]//Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, Oct 23-27, 2006. New York: ACM, 2006: 421-430.
[37] CHUA T S, TANG J, HONG R, et al. NUS-WIDE: a real-world web image database from National University of Singa-pore[C]//Proceedings of the 8th ACM International Conference on Image and Video Retrieval, Santorini Island, Jul 8-10, 2009. New York: ACM, 2009: 1-9.
[38] ELEFTHERIOS S X, SYMEON P, IOANNIS Y K, et al. A comprehensive study over VLAD and product quantization in large-scale image retrieval[J]. IEEE Transactions on Multi-media, 2014, 16(6): 1713-1728.
[39] PESTIAN J, BREW C, MATYKIEWICZ P, et al. A shared task involving multi-label classification of clinical free text[C]//Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing, Prague, Jun 29, 2007. Stroudsburg: ACL, 2007: 97-104.
[40] ASHOK N S, BRETT Z U. Discovering recurring anomalies in text reports regarding complex space systems[C]//Procee-dings of the 2005 IEEE Aerospace Conference, Big Sky, Mar 5-12, 2005. Piscataway: IEEE, 2005: 3853-3862.
[41] KATAKIS I, TSOUMAKAS G, VLAHAVAS I. Multilabel text classification for automated tag suggestion[C]//Proceedings of the ECMLPKDD 2008 Discovery Challenge, 2008: 75-83.
[42] TURNBULL D, BARRINGTON L, TORRES D, et al. Seman-tic annotation and retrieval of music and sound effects[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(2): 467-476.
[43] 于玉海, 林鸿飞, 孟佳娜, 等. 跨模态多标签生物医学图像分类建模识别[J]. 中国图象图形学报, 2018, 23(6): 917-927.
YU Y H, LIN H F, MENG J N, et al. Classification modeling and recognition for cross modal and multi-label biomedical image[J]. Journal of Image and Graphics, 2018, 23(6): 917-927.
[44] 井佩光, 李亚鑫, 苏育挺. 一种多模态特征编码的短视频多标签分类方法[J]. 西安电子科技大学学报, 2022, 49(4): 109-117.
JING P G, LI Y X, SU Y T. Micro-video multi-label classi-fication method based on multi-modal feature encoding[J]. Journal of Xidian University, 2022, 49(4): 109-117.
[45] TANG P, YAN X, NAN Y, et al. FusionM4Net: a multi-stage multi-modal learning algorithm for multi-label skin lesion classification[J]. Medical Image Analysis, 2022, 76: 102307.
[46] ZHANG Y, CHEN M, SHEN J, et al. Tailor versatile multi-modal learning for multi-label emotion recognition[C]//Proceedings of the 36th AAAI Conference on Artificial Inte-lligence, Vancouver, Feb 22-Mar 1, 2022. Menlo Park: AAAI, 2022: 9100-9108.
[47] LIU P, YUAN W, FU J, et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing[J]. ACM Computing Surveys, 2023, 55(9): 1-35.
[48] CHAI Y, TENG C, FEI H, et al. Prompt-based generative multi-label emotion prediction with label contrastive lear-ning[C]//LNCS 13551: Proceedings of the 11th CCF Inter-national Conference on Natural Language Processing and Chinese Computing, Guilin, Sept 24-25, 2022. Cham: Springer, 2022: 551-563.
[49] SONG R, LIU Z, CHEN X, et al. Label prompt for multi-label text classification[J]. Applied Intelligence, 2023, 53(8): 8761-8775.
[50] WANG H, XU C, MCAULEY J. Automatic multi-label prompting: simple and interpretable few-shot classification[C]//Proceedings of the 2022 Conference of the North Ame-rican Chapter of the Association for Computational Lingui-stics: Human Language Technologies, Seattle, Jul 10-15, 2022. Stroudsburg: ACL, 2022: 5483-5492.
[51] TAREKEGN A N, GIACOBINI M, MICHALAK K. A review of methods for imbalanced multi-label classification[J]. Pattern Recognition, 2021, 118: 107965.
[52] ZHU X, LI J, REN J, et al. Dynamic ensemble learning for multi-label classification[J]. Information Sciences, 2023, 623: 94-111. |