[1] LEE J, LEE D, LEE Y C, et al. Improving the accuracy of top-N recommendation using a preference model[J]. Information Sciences, 2016, 348: 290-304.
[2] DAVIDSON J, LIEBALD B, LIU J, et al. The YouTube video recommendation system[C]//Proceedings of the 4th ACM Conference on Recommender Systems, Barcelona, Sep 26-30, 2010. New York: ACM, 2010: 293-296.
[3] SALAKHUTDINOV R, MNIH A, HINTON G. Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning, Corvallis, Jun 20-24, 2007. New York: ACM, 2007: 791-798.
[4] JOHNSON C C. Logistic matrix factorization for implicit feedback data[C]//Advances in Neural Information Processing Systems 27, Montreal, Dec 8-13, 2014: 1-9.
[5] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. arXiv:1406.2661, 2014.
[6] NI S, ZHOU W, WEN J, et al. Enhancing sequential recommendation with contrastive generative adversarial network[J]. Information Processing & Management, 2023, 60(3): 103331.
[7] 王娜, 何晓明, 刘志强, 等. 一种基于用户播放行为序列的个性化视频推荐策略[J]. 计算机学报, 2020, 43(1): 123-135.
WANG N, HE X M, LIU Z Q, et al. Personalized video recommendation strategy based on user’s playback behavior sequence[J]. Chinese Journal of Computers, 2020, 43(1): 123-135.
[8] 陈继伟, 汪海涛, 姜瑛, 等. 基于生成对抗模型的序列推荐算法[J]. 中文信息学报, 2022, 36(7): 143-153.
CHEN J W, WANG H T, JIANG Y, et al. Sequential recommendation with generative adversarial networks[J]. Journal of Chinese Information Processing, 2022, 36(7): 143-153.
[9] WANG J, YU L, ZHANG W, et al. IRGAN: a minimax game for unifying generative and discriminative information retrieval models[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Aug 7-11, 2017. New York: ACM, 2017: 515-524.
[10] WANG H W, WANG J, WANG J L, et al. Graph GAN: graph representation learning with generative adversarial nets[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 2508-2515.
[11] CHAE D K, KANG J S, KIM S W, et al. CFGAN: a generic collaborative filtering framework based on generative adversarial networks[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 137-146.
[12] WU H, LONG J, LI N, et al. Adversarial auto-encoder domain adaptation for cold-start recommendation with positive and negative hypergraphs[J]. ACM Transactions on Information Systems, 2023, 41(2): 1-25.
[13] ZHENG Y. DGCN: diversified recommendation with graph convolutional networks[C]//Proceedings of the Web Conference 2021, Ljubljana Slovenia, Apr 19-23, 2021. New York: ACM, 2021: 401-412.
[14] CAI X, HAN J, YANG L. Generative adversarial network based heterogeneous bibliographic network representation for personalized citation recommendation[C]//Proceedings of the 2018 AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5747-5754.
[15] RENDLE S, FREUDENTHALER C. Improving pairwise learning for item recommendation from implicit feedback[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, Feb 24-28, 2014. New York: ACM, 2014: 273-282.
[16] LIANG G, ON B W, JEONG D, et al. A text GAN framework for creative essay recommendation[J]. Knowledge-Based Systems, 2021, 232: 107501.
[17] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[18] ZHANG J, FENG Y, WANG C, et al. Multi-domain clustering pruning: exploring space and frequency similarity based on GAN[J]. Neurocomputing, 2023, 542: 126279.
[19] 张玉洁, 董政, 孟祥武. 个性化广告推荐系统及其应用研究[J]. 计算机学报, 2021, 44(3): 531-563.
ZHANG Y J, DONG Z, MENG X W. Research on personalized advertising recommendation systems and their application[J]. Chinese Journal of Computers, 2021, 44(3): 531-563.
[20] GARCíA-GIL D, LUQUE-SáNCHEZ F, LUENGO J, et al. From big to smart data: iterative ensemble filter for noise filtering in big data classification[J]. International Journal of Intelligent Systems, 2019, 34(12): 3260-3274.
[21] GAO M, ZHANG J, YU J, et al. Recommender systems based on generative adversarial networks: a problem-driven perspective[J]. Information Sciences, 2021, 546: 1166-1185.
[22] SEDHAIN S, MENON A K, SANNER S, et al. AutoRec: autoencoders meet collaborative filtering[C]//Proceedings of the 24th International Conference on World Wide Web, Florence, May 18-22, 2015. New York: ACM, 2015: 111-112.
[23] WU C Y, AHMED A, BEUTEL A, et al. Recurrent recommender networks[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, Feb 6-10, 2017. New York: ACM, 2017: 495-503.
[24] WU Y, DUBOIS C, ZHENG A X, et al. Collaborative denoising auto-encoders for top-n recommender systems[C]//Proceedings of the 9th ACM International Conference on Web Search and Data Mining, San Francisco, Feb 22-25, 2016. New York: ACM, 2016: 153-162.
[25] HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 173-182.
[26] RAZA S M, JANG B, YANG H, et al. Improved GAN with fact forcing for mobility prediction[J]. Journal of Network and Computer Applications, 2022, 207: 103488.
[27] IMRAN A S, YANG R, KASTRATI Z, et al. The impact of synthetic text generation for sentiment analysis using GAN based models[J]. Egyptian Informatics Journal, 2022, 23(3): 547-557.
[28] 吴正洋, 汤庸, 刘海. 个性化学习推荐研究综述[J]. 计算机科学与探索, 2022, 16(1): 21-40.
WU Z Y, TANG Y, LIU H. Survey of personalized learning recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 21-40.
[29] BHARADHWAJ H, PARK H, LIM B Y. RecGAN: recurrent generative adversarial networks for recommendation systems[C]//Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, Oct 2-7, 2018. New York: ACM, 2018: 372-376.
[30] WANG Q, YIN H, WANG H, et al. Enhancing collaborative filtering with generative augmentation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 548-556.
[31] ZHAO J, MATHIEU M, LECUN Y. Energy-based generative adversarial network[J]. arXiv:1609.03126, 2016.
[32] WANG H, SHAO N, LIAN D. Adversarial binary collaborative filtering for implicit feedback[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5248-5255.
[33] QIN J, LIU B, QIAN J. A novel privacy-preserved recommender system framework based on federated learning[C]// Proceedings of the 4th International Conference on Software Engineering and Information Management, Beijing, Dec 10-12, 2021: 82-88.
[34] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of the 2017 International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 214-223.
[35] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014.
[36] 严冬梅, 李斌. 基于生成式对抗神经网络的股票预测研究[J]. 计算机工程与应用, 2022, 58(13): 185-194.
YAN D M, LI B. Research on stock prediction based on generative adversarial networks[J]. Computer Engineering and Applications, 2022, 58(13): 185-194.
[37] YANG Z, QIN J, LIN C, et al. GANRec: a negative sampling model with generative adversarial network for recommendation[J]. Expert Systems with Applications, 2023, 214: 119155.
[38] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. arXiv:1207.0580, 2012.
[39] GUO G, ZHANG J, YORKE-SMITH N. A novel Bayesian similarity measure for recommender systems[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, Aug 3-9, 2013. Palo Alto: AAAI, 2013: 2619-2625.
[40] GUO G, ZHANG J, THALMANN D, et al. Etaf: an extended trust antecedents framework for trust prediction[C]//Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Beijing, Aug 17-20, 2014. Piscataway: IEEE, 2014: 540-547.
[41] 张金柱, 蒋霖琪, 王玥, 等. 基于异构网络表示学习的相关图书推荐研究[J]. 计算机工程与应用, 2022, 58(9): 263-270.
ZHANG J Z, JIANG L Q, WANG Y, et al. Book recommendation based on heterogeneous network representation learning[J]. Computer Engineering and Applications, 2022, 58(9): 263-270.
[42] 王永贵, 林佳敏, 何佳玉. 融合领导者影响与隐式信任度的群组推荐方法[J]. 计算机工程与应用, 2022, 58(9): 98-106.
WANG Y G, LIN J M, HE J Y. Group recommendation method combining leader influence and implicit trust metrics[J]. Computer Engineering and Applications, 2022, 58(9): 98-106.
[43] YU L, ZHANG W, WANG J, et al. SeqGAN: sequence generative adversarial nets with policy gradient[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 2852-2858.
[44] DERVISHAJ E, CREMONESI P. GAN-based matrix factorization for recommender systems[C]//Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, Gwangju, Apr 11-15, 2022. New York: ACM, 2022: 1373-1381. |