[1] WANG X, ZOU L, WANG C K, et al. Research on knowledge graph data management: a survey[J]. Journal of Software, 2019, 30(7): 2139-2174.
[2] LIU H X, WU Y X, YANG Y M. Analogical inference for multi-relational embeddings[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 2168-2178.
[3] ZHANG Z Q, WANG J, YE J P, et al. Rethinking graph convolutional networks in knowledge graph completion[C]//Proceedings of the ACM Web Conference 2022, New York, Apr 25-29,?2022. New York: ACM, 2022: 798-807.
[4] WANG H W, REN H Y, LESKOVEC J. Relational message passing for knowledge graph completion[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, Aug 23-27, 2021. New York: ACM, 2021: 1697-1707.
[5] VASHISHTH S, SANYAL S, NITIN N, et al. Composition-based multi-relational graph convolutional neworks[C]//Pro-ceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020.
[6] NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention based embeddings for relation prediction in knowledge graphs[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Stroudsburg, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 4710-4723.
[7] FU T S, JING Z, CHEN W. A comprehensive overview of knowledge graph completion[J]. Knowledge-Based Systems, 2022, 255: 109597.
[8] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Pro-ceedings of the 26th International Conference on Neural Information Processing Systems, Nevada, Dec 5-8, 2013: 2787-2795.
[9] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Quebec, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1112-1119.
[10] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Texas, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 2181-2187.
[11] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 687-696.
[12] YANY B, HE X. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 2015 International Conference on Learning Representations, San Diego, May 7-9, 2015: 1412-1420.
[13] PUJARA J, MIAO H, GETOOR L, et al. Ontology-aware partitioning for knowledge graph identification[C]//Proceedings of the 2013 Conference on Automated Knowledge Base Construction, San Francisco, Oct 27-28, 2013: 19-24.
[14] AN B, CHEN B, HAN X P, et al. Accurate text-enhanced knowledge graph representation learning[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 745-755.
[15] YAO L, MAO C S, LUO Y. KG-BERT: BERT for knowledge graph completion[J]. arXiv:1909.03193, 2019.
[16] XIE R B, LIU Z Y, LUAN H B, et al. Image-embodied know-ledge representation learning[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 3140-3146.
[17] LIU Y, LI H, GARCI?A-DURA?N A, et al. MMKG: multi-modal knowledge graphs[C]//Proceedings of the 16th International Conference on Semantic Web, Berlin, Sep 23-27, 2019: 459-474.
[18] LIANG S, ZHU A J, ZHANG J S, et al. Hyper-node relational graph attention network for multi-modal knowledge graph completion[J]. ACM Transactions on Multimedia Com-puting, Communications, and Applications, 2023, 19(2): 1-21.
[19] ZHANG Y C, ZHANG W. Knowledge graph completion with pre-trained multi-modal transformer and twins negative sampling[J]. arXiv:2209.07084, 2022.
[20] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Lin-guistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186.
[21] REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using BERT-networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019: 3980-3990.
[22] CHEN L Y, LI Z, WANG Y J, et al. MMEA: entity alignment for multimodal knowledge graph[C]//Proceedings of the 13th International Conference on Knowledge Science, Engineering and Management, Hangzhou, Aug 28-30, 2017: 134-147.
[23] MICHAEL S, THOMAS N K, PETER B, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 18th Extended Semantic Web Conference. Cham: Springer, 2018: 593-607.
[24] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 2071-2080.
[25] LI Z, LIU H, ZHANG Z, et al. Learning knowledge graph embedding with heterogeneous relation attention networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3961-3973.
[26] AHRABIAN K, FEIZI A, SALEHI Y, et al. Structure aware negative sampling in knowledge graphs[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6093-6101.
[27] TANG Z W, PEI S C, ZHANG Z, et al. Positive-unlabeled learning with adversarial data augmentation for knowledge graph completion[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, Vienna, Jul 23-29, 2022: 2248-2254. |