[1] 陈旭. 基于深度学习的少样本字体生成算法研究[D]. 济南: 山东大学, 2022.
CHEN X. Few-shot font generation based on deep learning[D]. Jinan: Shandong University, 2022.
[2] ZHANG Y, ZHANG Y, CAI W. Separating style and content for generalized style transfer[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 8447-8455.
[3] GAO Y, GUO Y, LIAN Z, et al. Artistic glyph image synthesis via one-stage few-shot learning[J]. ACM Transactions on Graphics, 2019, 38(6): 1-12.
[4] LIU W, LIU F, DING F, et al. XMP-Font: self-supervised cross-modality pre-training for few-shot font generation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7905-7914.
[5] CHA J, CHUN S, LEE G, et al. Few-shot compositional font generation with dual memory[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 735-751.
[6] PARK S, CHUN S, CHA J, et al. Multiple heads are better than one: few-shot font generation with multiple localized experts[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13900-13909.
[7] LI C, TANIGUCHI Y, LU M, et al. Few-shot font style transfer between different languages[C]//Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 433-442.
[8] HUANG Y, HE M, JIN L, et al. RD-GAN: few/zero-shot Chinese character style transfer via radical decomposition and rendering[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 156-172.
[9] WU S J, YANG C Y, HSU J Y. CalliGAN: style and structure-aware Chinese calligraphy character generator[J]. arXiv:2005. 12500, 2020.
[10] PARK S, CHUN S, CHA J, et al. Few-shot font generation with localized style representations and factorization[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Washington, Feb 7-14, 2021. Menlo Park: AAAI, 2021: 2393-2402.
[11] KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1/2): 83-97.
[12] GRETTON A, BOUSQUET O, SMOLA A, et al. Measuring statistical dependence with Hilbert-Schmidt norms[C]//Proceedings of the 16th International Conference on Algorithmic Learning Theory, Singapore, Oct 8-11, 2005. Berlin, Heidelberg: Springer, 2005: 63-77.
[13] GRETTON A, FUKUMIZU K, TEO C H, et al. A kernel statistical test of independence[C]//Advances in Neural Information Processing Systems 20: Proceedings of the 21st Annual Conference on Neural Information Processing Systems, Vancouver, Dec 3-6, 2007. Red Hook: Curran Associates, 2008: 585-592.
[14] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 2881-2890.
[15] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 19-21,2018. Washington: IEEE Computer Society, 2018: 586-595.
[16] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANS trained by a two time-scale update rule converge to a local Nash equilibrium[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 6626-6637. |