[1] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 886-893.
[2] HAREL J, KOCH C, PERONA P. Graph-based visual saliency[C]//Advances in Neural Information Processing Systems 19, Vancouver, Dec 4-7, 2006. Cambridge: MIT Press, 2007: 545-552.
[3] SEDAGHAT A, EBADI H. Remote sensing image matching based on adaptive binning SIFT descriptor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5283-5293.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington:IEEE Computer Society, 2014: 580-587.
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington:IEEE Computer Society, 2015: 1440-1448.
[6] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Advances in Neural Information Processing Systems 28, Montreal, Dec 7-12, 2015: 91-99.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 779-788.
[8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[9] 苏树智, 谢玉麒. 基于距离约束的改进FCOS遥感图像检测方法[J]. 计算机工程与应用, 2023, 59(10): 227-235.
SU S Z, XIE Y Q. Improved FCOS remote sensing image detection method based on distance constraint[J]. Computer Engineering and Applications, 2023, 59(10): 227-235.
[10] 张云佐, 郭威, 蔡昭权, 等. 联合多尺度与注意力机制的遥感图像目标检测[J]. 浙江大学学报(工学版), 2022, 56(11): 2215-2223.
ZHANG Y Z, GUO W, CAI Z Q, et al. Remote sensing image target detection combining multi-scale and attention mechanism[J]. Journal of Zhejiang University (Engineering Edition), 2022, 56(11): 2215-2223.
[11] TAN M, PANG R, LE Q V. EfficientDet:scalable and efficient object detection[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2020: 1-10.
[12] 赵文清, 康怿瑾, 赵振兵, 等. 改进YOLOv5s的遥感图像目标检测[J]. 智能系统学报, 2023, 18(1): 86-95.
ZHAO W Q, KANG Y J, ZHAO Z B, et al. A remote sensing image object detection algorithm with improved YOLOv5s[J]. CAAI Transactions on Intelligent Systems, 2023, 18(1): 86-95.
[13] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11534-11542.
[14] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10012-10022.
[15] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13713-13722.
[16] XU X, FENG Z, CAO C, et al. An improved swin transformer-based model for remote sensing object detection and instance segmentation[J]. Remote Sensing, 2021, 13(23): 4779.
[17] YE Y, REN X, ZHU B, et al. An adaptive attention fusion mechanism convolutional network for object detection in remote sensing images[J]. Remote Sensing, 2022, 14(3): 516.
[18] 李婕, 周顺, 朱鑫潮, 等. 结合多通道注意力的遥感图像飞机目标检测[J]. 计算机工程与应用, 2022, 58(1): 209-217.
LI J, ZHOU S, ZHU X C, et al. Remote sensing image aircraft target detection combined with multiple channel attention[J]. Computer Engineering and Applications, 2022, 58(1): 209-217.
[19] DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style convnets great again[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13733-13742.
[20] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[21] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2017: 2980-2988.
[22] YANG Z, ZHU L, WU Y, et al. Gated channel transformation for visual recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11794-11803.
[23] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[24] ZHAI S, WU H, KUMAR A, et al. S3Pool: pooling with stochastic spatial sampling[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 4970-4978.
[25] STERGIOU A, POPPE R. AdaPool: exponential adaptive pooling for information-retaining downsampling[J]. IEEE Transactions on Image Processing, 2022, 32: 251-266.
[26] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE, 2019: 658-666.
[27] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9627-9636.
[28] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 213-229.
[29] LONG X, DENG K, WANG G, et al. PP-YOLO: an effective and efficient implementation of object detector[J]. arXiv:2007.12099, 2020.
[30] CHEN T, LI R, FU J, et al. Tucker bilinear attention network for multi-scale remote sensing object detection[J]. arXiv:2303.05329, 2023.
[31] ZHOU L, WEI H, LI H, et al. Arbitrary-oriented object detection in remote sensing images based on polar coordinates[J]. IEEE Access, 2020, 8: 223373-223384.
[32] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[33] HUANG X, WANG X, LV W, et al. PP-YOLOv2: a practical object detector[J]. arXiv:2104.10419, 2021.
[34] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[35] SHI L, LI Y, ZHU X. Anchor free remote sensing detector based on solving discrete polar coordinate equation[J]. arXiv:2303.11694, 2023.
[36] 曾伦杰, 储珺, 陈昭俊. 二阶段锚框和类均衡损失的遥感图像目标检测[J]. 图学学报, 2023, 44(2): 249-259.
ZENG L J, CHU J, CHEN Z J. Object detection in remote sensing image based on two-stage anchor and class balanced loss[J]. Journal of Graphics, 2023, 44(2): 249-259.
[37] ZEILER M D, FERGUS R. Stochastic pooling for regularization of deep convolutional neural networks[J]. arXiv:1301.3557, 2013.
[38] SAEEDAN F, WEBER N, GOESELE M, et al. Detail-preserving pooling in deep networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Reco-gnition. Washington: IEEE Computer Society, 2018: 9108-9116.
[39] GAO Z, WANG L, WU G. LIP: local importance-based pooling[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3355-3364. |