[1] 顾晨亮, 杨恒, 刘友波, 等. 基于自适应局部斥力与归一化面积损失的工程车辆目标检测[J]. 中国安全生产科学技术, 2021, 17(11): 40-47.
GU C L, YANG H, LIU Y B, et al. Object detection of engineering vehicles based on self-adaptive local exclusion loss and normalized area loss[J]. Journal of Safety Science and Technology, 2021, 17(11): 40-47.
[2] GUO Y P, YANG X, LI S L. Dense construction vehicle detec-tion based on orientation-aware feature fusion convolutional neural network[J]. Automation in Construction, 2020, 112:103124.
[3] 谌贵辉, 易欣, 李忠兵, 等. 基于改进YOLOv2和迁移学习的管道巡检航拍图像第三方施工目标检测[J]. 计算机应用, 2020, 40(4): 1062-1068.
CHEN G H, YI X, LI Z B, et al. Third-party construction target detection in aerial images of pipeline inspection based on improved YOLOv2 and transfer learning[J]. Journal of Computer Applications, 2020, 40(4): 1062-1068.
[4] KIM D, LIU M Y, LEE S H, et al. Remote proximity moni-toring between mobile construction resources using camera-mounted UAVs[J]. Automation in Construction, 2019, 99: 168-182.
[5] 蔡振宇, 王泽锴, 陈特欢, 等. 基于YOLOv3的正下无人机视角挖掘机实时检测方法[J]. 宁波大学学报(理工版), 2021, 34(2): 42-48.
CAI Z Y, WANG Z K, CHEN T H, et al. Real-time excava-tor detection under direct UAV view based on improved YOLOv3 method[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2021, 34(2): 42-48.
[6] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[7] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2980-2988.
[8] KIRILLOV A, WU Y X, HE K M, et al. PointRend: image segmentation as rendering[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 9799-9808.
[9] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Re-cognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 13733-13742.
[10] GUO M H, LU C Z, LIU Z N, et al. Visual attention net-work[J]. arXiv:2202.09741, 2022.
[11] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[J]. arXiv:1711.05101, 2017.
[12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal net-works[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2015, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 91-99.
[13] DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2016, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 379-387.
[14] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[15] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pat-tern Recognition, Las Vegas, Jun 27-30, 2016. Washington:IEEE Computer Society, 2016: 779-788.
[16] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convo-lutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9626-9635.
[17] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//LNCS 12346: Procee-dings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 213-229.
[18] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierar-chical vision transformer using shifted windows[C]//Procee-dings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 10012-10022.
[19] REDMON J, FARHADI A. YOLOv3: an incremental improve-ment[J]. arXiv:1804.02767, 2018.
[20] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[21] ULTRALYTICS. YOLOv5[EB/OL]. (2021-04-13) [2022-04-13]. https://github.com/ultralytics/yolov5/.
[22] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//LNCS 8693: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 5-12, 2014. Cham: Springer, 2014: 740-755.
[23] DING X H, GUO Y C, DING G G, et al. ACNet: streng-thening the kernel skeletons for powerful CNN via asym-metric convolution blocks[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1911-1920.
[24] DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 10881-10890.
[25] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9.
[26] HU J, SHEN L, SUN G, et al. Squeeze-and-excitation net-works[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 7132-7141.
[27] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11531-11539.
[28] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[29] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Re-cognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 13708-13717.
[30] KINGMA D P, BA J. Adam: a method for stochastic optimi-zation[J]. arXiv:1412.6980, 2014.
[31] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understan-ding[J]. arXiv:1810.04805, 2018.
[32] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[J]. arXiv: 2201.03545, 2022.
[33] AN X H, ZHOU L, LIU Z G, et al. Dataset and benchmark for detecting moving objects in construction sites[J]. Auto-mation in Construction, 2021, 122: 103482.
[34] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
[35] HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer So-ciety, 2016: 770-778.
[36] HUANG Z J, HUANG L C, GONG Y C, et al. Mask sco-ring R-CNN[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 6402-6411.
[37] GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//Procee-dings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Pis-cataway: IEEE, 2019: 7029-7038.
[38] WANG X L, KONG T, SHEN C H, et al. SOLO: segmenting objects by locations[C]//LNCS 12363: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 649-665.
[39] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2999-3007.
[40] LI Y H, CHEN Y T, WANG N Y, et al. Scale-aware trident networks for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6053-6062.
[41] XIE S N, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Pro-ceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Wa-shington: IEEE Computer Society, 2017: 5987-5995.
[42] CHEN K, WANG J Q, PANG J M, et al. MMDetection: open MMLab detection toolbox and benchmark[J]. arXiv:1906.07155, 2019. |