[1] 马先红, 李峰, 宋荣琦. 玉米的品质特性及综合利用研究进展[J]. 粮食与油脂, 2019, 32(1): 1-3.
MA S H, LI F, SONG R Q. Research on quality characte-ristics and comprehensive utilization of maize[J]. Cereals & Oils, 2019, 32(1): 1-3.
[2] 杨小倩, 郅慧, 张辉, 等. 玉米不同部位化学成分、药理作用、利用现状研究进展[J]. 吉林中医药, 2019, 39(6): 837-840.
YANG X Q, ZHI H, ZHANG H, et al. Research progress on chemical constituents, pharmacological effects and utili-zation status of different parts of corn[J]. Jilin Journal of Traditional Chinese Medicine, 2019, 39(6): 837-840.
[3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image-Net classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[4] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9.
[5] HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[6] REDMON J, FARHADI A. YOLOv3: an incremental imp-rovement[J]. arXiv:1804.02767, 2018.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[8] REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: towards real time object detection with region proposal net-works[J]. IEEE Transactions on Pattern Analysis and Mac-hine Intelligence, 2017, 39(6): 1137-1149.
[9] LIN T Y, DOLLáR P, GIRSHICK R B, et al. Feature pyra-mid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944.
[10] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 8759-8768.
[11] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 10778-10787.
[12] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[13] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[14] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recogni-tion, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 13713-13722.
[15] ZHENG Z H, WANG P, REN D W, et al. Enhancing geome-tric factors in model learning and inference for object detec-tion and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
[16] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and effi-cient IOU loss for accurate bounding box regression[J]. Neuro-computing, 2022, 506: 146-157. |