[1] FRITSCH J, KüHNL T, GEIGER A. A new performance mea-sure and evaluation benchmark for road detection algori-thms[C]//Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems, The Hague, Oct 6-9, 2013. Piscataway: IEEE, 2013: 1693-1700.
[2] RONNEBERGER O, FISCHER P, BROX T. U-Net: convo-lutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Con-ference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241.
[3] AZUMA R T. A survey of augmented reality[J]. Presence: Teleoperators & Virtual Environments, 1997, 6(4): 355-385.
[4] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Com-puter Society, 2015: 3431-3440.
[5] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[6] LIN G S, MILAN A, SHEN C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmen-tation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5168-5177.
[7] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6230-6239.
[8] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Seman-tic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv:1412.7062, 2014.
[9] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deep-Lab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[10] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethin-king atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[11] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 833-851.
[12] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015.
[13] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3146-3154.
[14] HE J J, DENG Z Y, ZHOU L, et al. Adaptive pyramid context network for semantic segmentation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7519-7528.
[15] HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[16] LIU W, RABINOVICH A, BERG A C. ParseNet: looking wider to see better[J]. arXiv:1506.04579, 2015.
[17] LI X T, YOU A S, ZHU Z, et al. Semantic flow for fast and accurate scene parsing[C]//LNCS 12346: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 775-793.
[18] HUANG Z L, WEI Y C, WANG X G, et al. AlignSeg: feature-aligned segmentation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 550-557.
[19] DAI J F, QI H Z, XIONG Y W, et al. Deformable convo-lutional networks[C]//Proceedings of the 2017 IEEE Inter-national Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 764-773.
[20] CHOLLET F. Xception: deep learning with depthwise sepa-rable convolutions[C]//Proceedings of the 2017 IEEE Con-ference on Computer Vision and Pattern Recognition, Ho-nolulu, Jul 21-26, 2017. Washington: IEEE Computer So-ciety, 2017: 1800-1807.
[21] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[22] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Com-puter Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[23] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. Inter-national Journal of Computer Vision, 2010, 88(2): 303-338.
[24] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Procee-dings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washing-ton: IEEE Computer Society, 2016: 3213-3223.
[25] ZHOU Z W, SIDDIQUEE M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//LNCS 11045: Proceedings of the 4th International Work-shop on Deep Learning in Medical Image Analysis-and- Multimodal Learning for Clinical Decision Support, Gra-nada, Sep 20, 2018. Cham: Springer, 2018: 3-11.
[26] YU C, WANG J, PENG C, et al. Learning a discriminative feature network for semantic segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pat-tern Recognition, Salt Lake City, Jun 18-22, 2018. Washing-ton: IEEE Computer Society, 2018: 1857-1866.
[27] PENG C, ZHANG X Y, YU G, et al. Large kernel matters—improve semantic segmentation by global convolutional network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1743-1751.
[28] ROMERA E, ALVAREZ J M, BERGASA L M, et al. ERFNet: efficient residual factorized ConvNet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transpor-tation Systems, 2017, 19(1): 263-272.
[29] TAKIKAWA T, ACUNA D, JAMPANI V, et al. GATED-SCNN: gated shape CNNs for semantic segmentation[C]//Proceedings of the 2019 IEEE/CVF International Confe-rence on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Pis-cataway: IEEE, 2019: 5228-5237.
[30] SHAW A E, HUNTER D, LANDOLA F, et al. SqueezeNAS: fast neural architecture search for faster semantic segmen-tation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-28, 2019. Piscataway: IEEE, 2019: 2014-2024.
[31] ARTACHO B, SAVAKIS A E. Waterfall atrous spatial poo-ling architecture for efficient semantic segmentation[J]. Sensors, 2019, 19(24): 5361. |