[1] SMEULDERS A W M, CHU D M, CUCCHIARA R, et al. Visual tracking: an experimental survey[J]. IEEE Transa-ctions on Pattern Analysis and Machine Intelligence, 2013, 36(7): 1442-1468.
[2] TRUCCO E, PLAKAS K. Video tracking: a concise survey[J]. IEEE Journal of Oceanic Engineering, 2006, 31(2): 520-529.
[3] TSAGKATAKIS G, SAVAKIS A. Online distance metric learning for object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(12): 1810-1821.
[4] MING Y, MENG X, FAN C, et al. Deep learning for mono-cular depth estimation: a review[J]. Neurocomputing, 2021, 438: 14-33.
[5] ZHANG X, YU Q, YU H. Physics inspired methods for crowd video surveillance and analysis: a survey[J]. IEEE Access, 2018, 6: 66816-66830.
[6] DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: acc-urate tracking by overlap maximization[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4660-4669.
[7] XU Y D, WANG Z Y, LI Z X, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symp-osium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 12549- 12556.
[8] LUKEZIC A, VOJIR T, ZAJC L C, et al. Discriminative correlation filter with channel and spatial reliability[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4847-4856.
[9] MA C, HUANG J B, YANG X K, et al. Hierarchical convo-lutional features for visual tracking[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Soci-ety, 2015: 3074-3082.
[10] BHAT G, JOHNANDER J, DANELLJAN M, et al. Unvei-ling the power of deep tracking[C]//LNCS 11206: Procee-dings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 483-498.
[11] VALMADRE J, BERTINETTO L, HENRIQUES J F, et al. End-to-end representation learning for correlation filter based tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5000-5008.
[12] REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal net-works[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2015, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 91-99.
[13] ZHU Z, WANG Q, LI B, et al. Distractor-aware siamese networks for visual object tracking[C]//LNCS 11213: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 103-119.
[14] LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4282-4291.
[15] LI B, YAN J J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22,2018. Washington: IEEE Computer Society, 2018: 8971-8980.
[16] JIANG B R, LUO R X, MAO J Y, et al. Acquisition of localization confidence for accurate object detection[C]//LNCS 11218: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Sprin-ger, 2018: 816-832.
[17] DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, Jan 3-8, 2021. Piscataway: IEEE, 2021: 3559-3568.
[18] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 583-596.
[19] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]// LNCS 9914: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-10, 2016. Cham: Springer, 2016: 850-865.
[20] BELLO I, ZOPH B, VASWANI A, et al. Attention augm-ented convolutional networks[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 3285-3294.
[21] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE Conf-erence on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3146-3154.
[22] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Comp-uter Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[23] FU K, FAN D P, JI G P, et al. JL-DCF: joint learning and densely cooperative fusion framework for RGB-D salient object detection[C]//Proceedings of the 2020 IEEE/CVF Confer-ence on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 3049-3059.
[24] ZHANG H, WU C, ZHANG Z, et al. ResNeSt: split atten-tion networks[J]. arXiv:2004.08955, 2020.
[25] MA Z, WANG L Y, ZHANG H T, et al. RPT: learning point set representation for siamese visual tracking[C]//LNCS 12539: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 653-665. |