[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25, Lake Tahoe, Dec 3-6, 2012: 1097-1105.
[2] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, Montreal, Dec 7-12, 2015: 91-99.
[3] ZHAO J, GUO W, ZHANG Z, et al. A coupled convolutio-nal neural network for small and densely clustered ship de-tection in SAR images[J]. Science China Information Sciences, 2019, 62(4): 1-16.
[4] 许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25.
XU D G, WANG L, LI F. Review of typical object detec-tion algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 10-25.
[5] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.
[6] WANG X Y, HAN T X, YAN S C. An HOG-LBP human detector with partial occlusion handling[C]//Proceedings of the IEEE 12th International Conference on Computer Vi-sion, Kyoto, Sep 27-Oct 4, 2009. Washington: IEEE Com-puter Society, 2009: 32-39.
[7] LIN T Y, DOLLáR P, GIRSHICK R B, et al. Feature pyra-mid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Re-cognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Com-puter Society, 2017: 936-944.
[8] KONG T, SUN F C, YAO A B, et al. RON: reverse connec-tion with objectness prior networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5244-5252.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[10] LI Z, ZHOU F. FSSD: feature fusion single shot multibox detector[J]. arXiv:1712.00960, 2017.
[11] SINGH B, DAVIS L S. An analysis of scale invariance in object detection SNIP[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, Jul 18-22, 2018. Washington: IEEE Computer So-ciety, 2018: 3578-3587.
[12] FU C Y, LIN W, RANGA A, et al. DSSD: deconvolutional single shot detector[C]//Proceedings of the 2017 IEEE Con-ference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2881-2890.
[13] ZHOU P, NI B, GENG C, et al. Scale-transferrable object detection[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, Jul 18-22, 2018. Washington: IEEE Computer Society, 2018: 528-537.
[14] 宋云博, 陈冬艳, 郝赟, 等. 基于级联卷积神经网络的高效目标检测方法[J]. 计算机工程与应用, 2021, 57(5): 139-145.
SONG Y B, CHEN D Y, HAO Y, et al. Efficient object detection method based on cascaded convolutional neural network[J]. Computer Engineering and Applications, 2021, 57(5): 139-145.
[15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
[16] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Confe-rence on Computer Vision and Pattern Recognition, Las Ve-gas, Jun 27-30, 2016. Washington: IEEE Computer Society,2016: 770-778.
[17] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 4278-4284.
[18] 鞠默然, 罗江宁, 王仲博, 等. 融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40(13): 132-140.
JU M R, LUO J N, WANG Z B, et al. Multi-scale target detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 2020, 40(13): 132-140.
[19] WANG Q L, WU B B, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11531-11539.
[20] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Com-puter Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[21] BELL S, ZITNICK C L, BALA K, et al. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks[C]//Proceedings of the 2016 IEEE Confe-rence on Computer Vision and Pattern Recognition, Las Ve-gas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2874-2883.
[22] FASTER R. Towards real-time object detection with region proposal networks[C]//Advances in Neural Information Pro-cessing Systems 28, Montreal, Dec 7-12, 2015: 91-99.
[23] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[24] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recog-nition, Jun 19-25, 2021. Washington: IEEE Computer So-ciety, 2021: 13713-13722.
[25] EVERINGHAM M, VAN G, WILLIAMS C, et al. The pas-cal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
[26] JEONG J, PARK H, KWAK N. Enhancement of SSD by concatenating feature maps for object detection[J].arXiv:1705.09587, 2017.
[27] REDMON J, FARHADI A. YOLOV3: an incremental im-provement[J]. arXiv:1804.02767, 2018.
[28] DAI J, LI Y, HE K, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems 29, Barcelona, Dec 5-10, 2016: 379-387. |