[1] YADAV A, VISHWAKARMA D K. Sentiment analysis using deep learning architectures: a review[J]. Artificial Intelligence Review, 2020, 53(6): 4335-4385.
[2] RUDER S, GHAFFARI P, BRESLIN J G. A hierarchical model of reviews for aspect-based sentiment analysis[C]//Procee-dings of the 2016 Conference on Empirical Methods in Na-tural Language Processing, Austin, Nov 1-4, 2016. Strouds-burg: ACL, 2016: 999-1005.
[3] TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Dec 11-16, 2016. Stroudsburg: ACL, 2016: 3298-3307.
[4] TANG D, QIN B, LIU T. Aspect level sentiment classifica-tion with deep memory network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Pro-cessing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 214-224.
[5] WANG S, MAZUMDER S, LIU B, et al. Target-sensitive memory networks for aspect sentiment classification[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018.Stroudsburg: ACL, 2018: 957-967.
[6] LIU J, ZHANG Y. Attention modeling for targeted senti-ment[C]//Proceedings of the 15th Conference of the Euro-pean Chapter of the Association for Computational Lin-guistics, Valencia, Apr 3-8, 2017. Stroudsburg: ACL, 2017: 572-577.
[7] ZHANG Y, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 2205-2215.
[8] SUN K, ZHANG R, MENSAH S, et al. Aspect-level senti-ment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 5679-5688.
[9] HUANG B, CARLEY K. Syntax-aware aspect level senti-ment classification with graph attention networks[C]//Procee-dings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 5469-5477.
[10] ZENG B, YANG H, XU R, et al. LCF: a local context focus mechanism for aspect-based sentiment classification[J]. App-lied Sciences, 2019, 9(16): 3389.
[11] PHAN M H, OGUNBONA P O. Modelling context and syntactical features for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Asso-ciation for Computational Linguistics, Jul 5-10, 2020. Strouds-burg: ACL, 2020: 3211-3220.
[12] WANG Y, HUANG M, ZHAO L. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Lan-guage Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 606-615.
[13] MA D, LI S, ZHANG X, et al. Interactive attention net-works for aspect-level sentiment classification[C]//Procee-dings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 4068-4074.
[14] FAN F F, FENG Y S, ZHAO D Y. Multi-grained attention network for aspect-level sentiment classification[C]//Pro-ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Octr 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 3433-3442.
[15] ZHAO F, WU Z, DAI X. Attention transfer network for aspect-level sentiment classification[C]//Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Jul 8-13, 2020. Stroudsburg: ACL, 2020: 811-821.
[16] XU H, LIU B, SHU L, et al. BERT post-training for review reading comprehension and aspect-based sentiment analysis[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 2324-2335.
[17] DEVLIN J, CHANG M, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understand-ing[J]. arXiv:1810.04805, 2018.
[18] SONG Y W, WANG J H, JIANG T, et al. Attentional encoder network for targeted sentiment classification[J]. arXiv:1902.09314, 2019.
[19] LI X L, FU X Y, XU G L, et al. Enhancing BERT repre-sentation with context-aware embedding for aspect-based sentiment analysis[J]. IEEE Access, 2020, 8: 46868-46876.
[20] GAO Z J, FENG A, SONG X Y, et al. Target-dependent sentiment classification with BERT[J]. IEEE Access, 2019, 7: 154290-154299.
[21] ZHANG C, LI Q, SONG D. Aspect-based sentiment classi-fication with aspect-specific graph convolutional networks[C]//Proceedings of the 2019 Conference on Empirical Me-thods in Natural Language Processing and the 9th Inter-national Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4567-4577.
[22] LIU P, BAI X, ZHANG Y. Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network[J]. arXiv:2002.09685, 2020.
[23] WANG K, SHEN W, YANG Y, et al. Relational graph at-tention network for aspect-based sentiment analysis[C]//Pro-ceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 3229-3238.
[24] LIANG B, YIN R, GUI L, et al. Jointly learning aspect-focused and inter-aspect relations with graph convolutional networks for aspect sentiment analysis[C]//Proceedings of the 28th International Conference on Computational Lin-guistics, Barcelona, Dec 8-13, 2020: 150-161.
[25] PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1532-1543.
[26] DONG L, WEI F R, TAN C Q, el al. Adaptive recursive neural network for target-dependent Twitter sentiment classi-fication[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, Jun 22-27, 2014. Stroudsburg: ACL, 2014: 49-54.
[27] CHEN P, SUN Z Q, BING L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Pro-ceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Sep 9-11, 2017.Stroudsburg: ACL, 2017: 452-461.
[28] LIU N, SHEN B. Aspect-based sentiment analysis with gated alternate neural network[J]. Knowledge-Based Systems, 2019, 188: 105010-105024.
[29] ZHANG M, QIAN T Y. Convolution over hierarchical syn-tactic and lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Me-thods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 3540-3549.
[30] LI R F, CHEN H, FENG F X, et al. Dual graph convolu-tional networks for aspect-based sentiment analysis[C]//Pro-ceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 6319-6329. |