[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587.
[2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 779-788.
[3] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[4] DAI J, LI Y, HE K, et al. R-FCN: object detection via region- based fully convolutional networks[C]//Proceedings of the 29th Annual Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 379-387.
[5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] 宋云博, 陈冬艳, 郝赟, 等. 基于级联卷积神经网络的高效目标检测方法[J]. 计算机工程与应用, 2021, 57(5): 139-145.
SONG Y B, CHEN D Y, HAO Y, et al. Efficient object detection method based on cascaded convolutional neural network[J]. Computer Engineering and Applications, 2021,57(5): 139-145.
[7] XU H, JIANG C H, LIANG X D, et al. Reasoning-RCNN: unifying adaptive global reasoning into large-scale object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 6419-6428.
[8] WANG Y, CHEN Z, WU Q M J, et al. Deep mutual learning network for gait recognition[J]. Multimedia Tools and Applications, 2020, 79: 22653-22672.
[9] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[10] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 510-519.
[11] 李文涛, 彭力. 多尺度通道注意力融合网络的小目标检测算法[J]. 计算机科学与探索, 2021, 15(12): 2390-2400.
LI W T, PENG L. Small objects detection algorithm with multi-scale channel attention fusion network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2390-2400.
[12] 冀中, 孔乾坤, 王建. 一种双注意力模型引导的目标检测算法[J]. 激光与光电子学进展, 2020, 57(6): 115-122.
JI Z, KONG Q K, WANG J. Object detection algorithm guided by dual attention models[J]. Laser & Optoelectronics Progress, 2020, 57(6): 115-122.
[13] 陈维婧, 周萍, 杨海燕, 等. 通道-空间联合注意力机制的显著性检测模型[J]. 计算机工程与应用, 2021, 57(19): 214-219.
CHEN W J, ZHOU P, YANG H Y, et al. Salient detection model based on channel-spatial joint attention mechanism[J]. Computer Engineering and Applications, 2021, 57(19): 214-219.
[14] ZOU Z, LI C, ZHENG Y, et al. Two stages double attention convolutional neural network for crowd counting[J]. Multimedia Tools and Applications, 2020, 79(39): 29145-29159.
[15] HE Y H, ZHU C C, WANG J R, et al. Bounding box regression with uncertainty for accurate object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 2888-2897.
[16] GIRSHICK R B. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448.
[17] LIN T Y, DOLLáR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944.
[18] 陈飞, 章东平. 基于多尺度特征融合的Faster-RCNN道路目标检测[J]. 中国计量大学学报, 2018, 29(4): 393-397.
CHEN F, ZHANG D P. Road object detection based on multi-scale merged feature Faster-RCNN[J]. Journal of China University of Metrology, 2018, 29(4): 393-397.
[19] ZHAO X, ZHANG Y, ZHANG T, et al. Channel splitting network for single MR image super-resolution[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5649-5462.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[21] FELZENSZWALB P F, GIRSHICK R, MCALLESTER D A. Cascade object detection with deformable part models[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Washington: IEEE Computer Society, 2010: 2241-2248.
[22] WOO S, HWANG S, KWEON I S. StairNet: top-down semantic aggregation for accurate one shot detection[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, Mar 12-15, 2018. Piscataway: IEEE, 2018: 1093-1102.
[23] 陈彦如. 轻量级深度可分离混合卷积神经网络的目标检测算法[J]. 电子技术与软件工程, 2021(9): 156-159.
CHEN Y R. Lightweight deeply separable hybrid convolutional neural networks for target detection algorithms[J]. Electronic Technology and Software Engineering, 2021(9): 156-159.
[24] JUNEJO I N, AHMED N. A multi-branch separable convolution neural network for pedestrian attribute recognition[J]. Heliyon, 2020, 6(3): e03563.
[25] WOO S, HWANG S, JANG H D, et al. Gated bidirectional feature pyramid network for accurate one-shot detection[J]. Machine Vision and Applications, 2019, 30(4): 543-555.
[26] CHEN P Y, HSIEH J W, WANG C Y, et al. Residual bi-fusion feature pyramid network for accurate single-shot object detection[J]. arXiv:1911.12051, 2019.
[27] 吴天舒, 张志佳, 刘云鹏, 等. 基于改进SSD的轻量化小目标检测算法[J]. 红外与激光工程, 2018, 47(7): 37-43.
WU T S, ZHANG Z J, LIU Y P, et al. A lightweight small object detection algorithm based on improved SSD[J]. Infrared and Laser Engineering, 2018, 47(7): 37-43.
[28] 鞠默然, 罗江宁, 王仲博, 等. 融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40(13): 126-134.
U M R, LUO J N, WANG Z B, et al. Multi-scale target detection algorithm fused with attention mechanism[J]. Acta Optica Sinica, 2020, 40(13): 126-134.
[29] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6517-6525. |