计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (4): 861-877.DOI: 10.3778/j.issn.1673-9418.2308031
蓝鑫,吴淞,伏博毅,秦小林
出版日期:
2024-04-01
发布日期:
2024-04-01
LAN Xin, WU Song, FU Boyi, QIN Xiaolin
Online:
2024-04-01
Published:
2024-04-01
摘要: 遥感图像中目标具有方向任意性和排列紧密性的特点,在检测任务中使用倾斜边界框可以更加精确定位和分离目标。目前遥感图像旋转目标检测已经广泛应用于民用和军事国防领域,具有重要的研究意义和应用价值,已逐步成为研究热点。鉴于此,对遥感图像中旋转目标检测方法进行了系统性总结。首先,介绍了三种常用的倾斜边界框的表示形式。其次,重点阐述全监督学习下的特征错位、边界不连续、度量值与损失不一致性、旋转目标定位四个挑战。然后,根据不同的动机和改进策略,详细阐述了每种方法的核心思想及其优缺点,归纳出旋转目标检测方法框架。接着,列举了旋转目标检测在遥感领域常用数据集,给出了经典方法在不同数据集上的实验结果,并对不同方法的性能进行了评估。最后,结合深度学习应用于遥感图像旋转目标检测任务中存在的挑战,对该方向的未来发展趋势进行了展望。
蓝鑫, 吴淞, 伏博毅, 秦小林. 深度学习的遥感图像旋转目标检测综述[J]. 计算机科学与探索, 2024, 18(4): 861-877.
LAN Xin, WU Song, FU Boyi, QIN Xiaolin. Survey on Deep Learning in Oriented Object Detection in Remote Sensing Images[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 861-877.
[1] 于野, 艾华, 贺小军, 等. A-FPN算法及其在遥感图像船舶检测中的应用[J]. 遥感学报, 2020, 24(2): 107-115. YU Y, AI H, HE X J, et al. Attention-based feature pyramid networks for ship detection of optical remote sensing image[J]. Journal of Remote Sensing, 2020, 24(2): 107-115. [2] 赵文清, 孔子旭, 周震东, 等. 增强小目标特征的航空遥感目标检测[J]. 中国图象图形学报, 2021, 26(3): 644-653. ZHAO W Q, KONG Z X, ZHOU Z D, et al. Target detection algorithm of aerial remote sensing based on feature enhancement technology[J]. Journal of Image and Graphics, 2021, 26(3): 644-653. [3] 姚群力, 胡显, 雷宏. 基于多尺度卷积神经网络的遥感目标检测研究[J]. 光学学报, 2019, 39(11): 346-353. YAO Q L, HU X, LEI H. Object detection in remote sensing images using multiscale convolutional neural network[J]. Acta Optica Sinica, 2019, 39(11): 346-353. [4] 沙苗苗, 李宇, 李安. 基于改进Faster R-CNN的遥感图像多尺度飞机目标检测[J]. 遥感学报, 2021, 26(8): 1624-1635. SHA M M, LI Y, LI A. Multi-scale aircraft detection in optical remote sensing imagery based on advanced Faster R-CNN[J]. Journal of Remote Sensing, 2021, 26(8): 1624-1635. [5] XU D Q, WU Y Q. FE-YOLO: a feature enhancement network for remote sensing target detection[J]. Remote Sensing, 2021, 13(7): 1311. [6] GIRSHICK R B. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448. [7] REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 91-99. [8] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2961-2969. [9] GIRSHICK R B, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(1): 142-158. [10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 10-16, 2016. Cham: Springer, 2016: 21-37. [11] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7263-7271. [12] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. [13] REDMON J, DIVVALA S, GIRSHICK R B, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 779-788. [14] LIU L, PAN Z X, LEI B. Learning a rotation invariant detector with rotatable bounding box[J]. arXiv:1711.09405, 2017. [15] 刘小波, 刘鹏, 蔡之华, 等. 基于深度学习的光学遥感图像目标检测研究进展[J]. 自动化学报, 2021, 47(9): 2078-2089. LIU X B, LIU P, CAI Z H, et al. Research progress of optical remote sensing image object detection based on deep learning[J]. Acta Automatica Sinica, 2021, 47(9): 2078-2089. [16] 聂光涛, 黄华. 光学遥感图像目标检测算法综述[J]. 自动化学报, 2021, 47(8): 1749-1768. NIE G T, HUANG H. A survey of object detection in optical remote sensing images[J]. Acta Automatica Sinica, 2021, 47(8): 1749-1768. [17] LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. [18] 宋志娜, 眭海刚, 李永成. 高分辨率可见光遥感图像舰船目标检测综述[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1703-1715. SONG Z N, SUI H G, LI Y C. A survey on ship detection technology in high-resolution optical remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1703-1715. [19] 尹雅, 黄海, 张志祥. 基于光学遥感图像的舰船目标检测技术研究[J]. 计算机科学, 2019, 46(3): 82-87. YIN Y, HUANG H, ZHANG Z X. Research on ship detection technology based on optical remote sensing image[J]. Computer Science, 2019, 46(3): 82-87. [20] 祝文韬, 谢宝蓉, 王琰, 等. 光学遥感图像中的飞机目标检测技术研究综述[J]. 计算机科学, 2020, 47(S2): 165-171. ZHU W T, XIE B R, WANG Y, et al. Survey on aircraft detection in optical remote sensing images[J]. Computer Science, 2020, 47(S2): 165-171. [21] 张财广, 熊博莅, 匡纲要. 光学卫星遥感图像舰船目标检测综述[J]. 电波科学学报, 2020, 35(5): 637-647. ZHANG C G, XIONG B L, KUANG G Y. A survey of ship detection in optical satellite remote sensing images[J]. Chinese Journal of Radio Science, 2020, 35(5): 637-647. [22] 王盛铭, 王涛. 高光谱图像目标检测综述[C]//2020年第三届智慧教育与人工智能发展国际学术会议, 北京, 2020: 131-137. WANG S M, WANG T. Survey on target detection for hyperspectral imagery[C]//Proceedings of the 2020 the 3rd International Conference on Smart Education and Artificial Intelligence Development, Beijing, 2020: 131-137. [23] 张磊, 张永生, 于英, 等. 遥感图像倾斜边界框目标检测研究进展与展望[J]. 遥感学报, 2022, 26(9): 1723-1743. ZHANG L, ZHANG Y S, YU Y, et al. Survey on object detection in tilting box for remote sensing images[J]. Journal of Remote Sensing, 2022, 26(9): 1723-1743. [24] WEN L, CHENG Y, FANG Y, et al. A comprehensive survey of oriented object detection in remote sensing images[J]. Expert Systems with Applications, 2023, 224: 119960. [25] 张磊, 张永生, 于英, 等. 遥感图像目标检测的数据增广研究[J]. 测绘科学技术学报, 2019, 36(5): 505-510. ZHANG L, ZHANG Y S, YU Y, et al. Research on data augmentation for object detection of remote sensing image[J]. Journal of Geomatics Science and Technology, 2019, 36(5): 505-510. [26] DING J, XUE N, LONG Y, et al. Learning ROI transformer for oriented object detection in aerial images[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 2849-2858. [27] YANG X, YAN J C. Arbitrary-oriented object detection with circular smooth label[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 677-694. [28] YANG X, HOU L P, ZHOU Y, et al. Dense label encoding for boundary discontinuity free rotation detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 15819-15829. [29] YANG X, YANG J R, YAN J C, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 8232-8241. [30] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 12993-13000. [31] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 658-666. [32] 戴媛, 易本顺, 肖进胜, 等. 基于改进旋转区域生成网络的遥感图像目标检测[J]. 光学学报, 2020, 40(1): 270-280. DAI Y, YI B S, XIAO J S, et al. Object detection of remote sensing image based on improved rotation region proposal network[J]. Acta Optica Sinica, 2020, 40(1): 270-280. [33] MA J Q, SHAO W Y, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2017, 20(11): 3111-3122. [34] LIU Y L, JIN L W. Deep matching prior network: toward tighter multi-oriented text detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1962-1969. [35] ZHOU X Y, YAO C, WEN H, et al. East: an efficient and accurate scene text detector[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5551-5560. [36] LIAO M H, ZHU Z, SHI B G, et al. Rotation-sensitive regression for oriented scene text detection[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 5909-5918. [37] LIAO M H, SHI B G, BAI X. TextBoxes++: a single-shot oriented scene text detector[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3676-3690. [38] ZHANG Z, ZHANG C Q, SHEN W, et al. Multi-oriented text detection with fully convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 4159-4167. [39] AZIMI S M, VIG E, BAHMANYAR R, et al. Towards multi-class object detection in unconstrained remote sensing imagery[C]//Proceedings of the 2018 Asian Conference on Computer Vision, Perth, Dec 2-6, 2018. Cham: Springer, 2018: 150-165. [40] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 764-773. [41] JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[C]//Advances in Neural Information Processing Systems 28, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 2017-2025. [42] HAN J M, DING J, XUE N, et al. ReDet: a rotation-equivariant detector for aerial object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 2786-2795. [43] HAN J M, DING J, LI J, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-11. [44] PAN X J, REN Y Q, SHENG K K, et al. Dynamic refinement network for oriented and densely packed object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 11207-11216. [45] YANG X, YAN J C, FENG Z M, et al. R3Det: refined single-stage detector with feature refinement for rotating object[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 3163-3171. [46] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 10012-10022. [47] WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 568-578. [48] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 213-229. [49] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [50] MA T L, MAO M Y, ZHENG H H, et al. Oriented object detection with transformer[J]. arXiv:2106.03146, 2021. [51] DAI L H, LIU H, TANG H, et al. AO2-DETR: arbitrary-oriented object detection transformer[J]. IEEE Transactions on Circuits Systems for Video Technology, 2022, 33(5): 2342-2356. [52] QIAN W, YANG X, PENG S L, et al. Learning modulated loss for rotated object detection[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence, Hawaii, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 2458-2466. [53] YU Y, DA F P. Phase-shifting coder: predicting accurate orientation in oriented object detection[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Jun 18-22, 2023. Piscataway: IEEE, 2023: 13354-13363. [54] ZHENG Y, ZHANG D Y, XIE S N, et al. Rotation-robust intersection over union for 3D object detection[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 464-480. [55] GUO Z H, LIU C, ZHANG X S, et al. Beyond bounding-box: convex-hull feature adaptation for oriented and densely packed object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 8792-8801. [56] CHEN Z M, CHEN K, LIN W Y, et al. PIoU Loss: towards accurate oriented object detection in complex environments[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 195-211. [57] YANG X, YAN J C, MING Q, et al. Rethinking rotated object detection with Gaussian Wasserstein distance loss[C]//Proceedings of the 38th International Conference on Machine Learning, Vienna, Jul 18-24, 2021: 11830-11841. [58] YANG X, YANG X J, YANG J R, et al. Learning high-precision bounding box for rotated object detection via Kullback-Leibler divergence[C]//Advances in Neural Information Processing Systems 34, Dec 6-14, 2021. Red Hook: Curran Associates, 2021: 18381-18394. [59] YANG X, ZHOU Y, ZHANG G F, et al. The KFIoU loss for rotated object detection[C]//Proceedings of the 11th International Conference on Learning Representations, Kigali, May 1-5, 2023. [60] XU Y C, FU M T, WANG Q M, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(4): 1452-1459. [61] XIE X X, CHENG G, WANG J B, et al. Oriented R-CNN for object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 3520-3529. [62] CHENG Y H, XU C Q, KONG Y, et al. Short-side excursion for oriented object detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [63] 尹开石, 杨萌, 顾曦, 等. 基于角度敏感的空间注意力机制的轻量型旋转目标检测器[J]. 智能科学与技术学报, 2021, 3(3): 322-333. YIN K S, YANG M, GU X, et al. Light weight rotating object detector based on angle sensitive spatial attention mechanism[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 322-333. [64] ZHOU L, WEI H R, LI H, et al. Arbitrary-oriented object detection in remote sensing images based on polar coordinates[J]. IEEE Access, 2020, 8: 223373-223384. [65] MING Q, ZHOU Z Q, MIAO L J, et al. Dynamic anchor learning for arbitrary-oriented object detection[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 2355-2363. [66] LI W T, CHEN Y J, HU K X, et al. Oriented reppoints for aerial object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 1829-1838. [67] HOU L P, LU K, XUE J, et al. Shape-sdaptive selection and measurement for oriented object detection[C]//Proceedings of the 2022 AAAI Conference on Artificial Intelligence, New York, Feb 22- Mar 1, 2022. Menlo Park: AAAI, 2022: 923-932. [68] TANG Y H, CHEN W F, LUO Y J, et al. Humble teachers teach better students for semi-supervised object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 3132-3141. [69] CHEN B H, LI P Y, CHEN X, et al. Dense learning based semi-supervised object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 4815-4824. [70] TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 1195-1204. [71] HUA W, LIANG D K, LI J Y, et al. SOOD: towards semi-supervised oriented object detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision, Paris, Oct 2-6, 2023. Piscataway: IEEE, 2023: 15558-15567. [72] TAN Z W, JIANG Z G, GUO C, et al. WSODet: a weakly supervised oriented detector for aerial object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-12. [73] YANG X, ZHANG G F, LI W T, et al. H2RBox: horizonal box annotation is all you need for oriented object detection[C]//Proceedings of the 2023 International Conference on Learning Representations, Kigali, May 1-5, 2023. [74] ZHU H G, CHEN X G, DAI W Q, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]//Proceedings of the 2015 IEEE International Conference on Image Processing, Quebec City, Sep 27-30, 2015. Piscataway: IEEE, 2015: 3735-3739. [75] RAZAKARIVONY S, JURIE F. Vehicle detection in aerial imagery: a small target detection benchmark[J]. Journal of Visual Communication Image Representation, 2016, 34: 187-203. [76] LIU Z K, YUAN L, WENG L B, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]//Proceedings of the 2017 International Conference on Pattern Recognition Applications and Methods, Porto, Feb 24-26, 2017: 324-331. [77] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 3974-3983. [78] DING J, XUE N, XIA G S, et al. Object detection in aerial images: a large-scale benchmark and challenges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(11): 7778-7796. [79] CHEN K Y, WU M, LIU J M, et al. FGSD: a dataset for fine-grained ship detection in high resolution satellite images [J]. arXiv:2003.06832, 2020. [80] ZHANG Z N, ZHANG L, WANG Y, et al. ShipRSImageNet: a large-scale fine-grained dataset for ship detection in high-resolution optical remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8458-8472. [81] SUN X, WANG P J, YAN Z Y, et al. FAIR1M: a benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry Remote Sensing, 2022, 184: 116-130. [82] CHENG G, WANG J B, LI K, et al. Anchor-free oriented proposal generator for object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11. |
[1] | 王超学, 代宁. 融合双分支语义增强感知的遥感图像超分辨率重建算法[J]. 计算机科学与探索, 2024, 18(5): 1271-1285. |
[2] | 于范, 张菁. 滑窗注意力多尺度均衡的密集行人检测算法[J]. 计算机科学与探索, 2024, 18(5): 1286-1300. |
[3] | 曾凡智, 冯文婕, 周燕. 深度学习的自然场景文本识别方法综述[J]. 计算机科学与探索, 2024, 18(5): 1160-1181. |
[4] | 张凯丽, 王安志, 熊娅维, 刘运. 基于Transformer的单幅图像去雾算法综述[J]. 计算机科学与探索, 2024, 18(5): 1182-1196. |
[5] | 周燕, 李文俊, 党兆龙, 曾凡智, 叶德旺. 深度学习的三维模型识别研究综述[J]. 计算机科学与探索, 2024, 18(4): 916-929. |
[6] | 孙水发, 汤永恒, 王奔, 董方敏, 李小龙, 蔡嘉诚, 吴义熔. 动态场景的三维重建研究综述[J]. 计算机科学与探索, 2024, 18(4): 831-860. |
[7] | 王恩龙, 李嘉伟, 雷佳, 周士华. 基于深度学习的红外可见光图像融合综述[J]. 计算机科学与探索, 2024, 18(4): 899-915. |
[8] | 曹传博, 郭春, 李显超, 申国伟. 基于AECD词嵌入的挖矿恶意软件早期检测方法[J]. 计算机科学与探索, 2024, 18(4): 1083-1093. |
[9] | 杨超城, 严宣辉, 陈容均, 李汉章. 融合双重注意力机制的时间序列异常检测模型[J]. 计算机科学与探索, 2024, 18(3): 740-754. |
[10] | 申通, 王硕, 李孟, 秦伦明. 深度学习在动物行为分析中的应用研究进展[J]. 计算机科学与探索, 2024, 18(3): 612-626. |
[11] | 薛金强, 吴秦. 面向图像复原和增强的轻量级交叉门控Transformer[J]. 计算机科学与探索, 2024, 18(3): 718-730. |
[12] | 张华卫, 张文飞, 蒋占军, 廉敬, 吴佰靖. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464. |
[13] | 王一凡, 刘静, 马金刚, 邵润华, 陈天真, 李明. 深度学习在乳腺癌影像学检查中的应用进展[J]. 计算机科学与探索, 2024, 18(2): 301-319. |
[14] | 彭斌, 白静, 李文静, 郑虎, 马向宇. 面向图像分类的视觉Transformer研究进展[J]. 计算机科学与探索, 2024, 18(2): 320-344. |
[15] | 王昆, 郭威, 王尊严, 韩文强. 赤足足迹识别研究综述[J]. 计算机科学与探索, 2024, 18(1): 44-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||