计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (3): 740-754.DOI: 10.3778/j.issn.1673-9418.2304005
杨超城,严宣辉,陈容均,李汉章
出版日期:
2024-03-01
发布日期:
2024-03-01
YANG Chaocheng, YAN Xuanhui, CHEN Rongjun, LI Hanzhang
Online:
2024-03-01
Published:
2024-03-01
摘要: 时间序列异常检测作为时间序列研究的重要组成部分,已经引起学术界和工业界的广泛关注和研究。针对时间序列数据中蕴含的深层局部特征和复杂的前后依赖关系,提出一种融合双重注意力机制的异常检测模型。该模型采用自编码器结构,由挤压激励注意力模块(SEAB)和概率稀疏自注意力模块(PSAB)组成编码器。SEAB通过利用动态加权窗口划分,为具有强可辨识性的子序列片段赋予更大的权重,使模型能够更加有效地挖掘出具有重要信息的局部特征。PSAB则采用稀疏自注意力机制,保留具有较高权重的点积,去除冗余的时序特征,降低了时间复杂度,从而捕获时间序列的长期依赖关系。实验结果表明,该模型在9个对比模型中取得了最高的[F1]分数0.97,并在14个测试数据集中有8个[F1]分数超过其他所有对比模型,因此可有效地识别时间序列数据中的异常情况,并具备先进的异常检测性能。
杨超城, 严宣辉, 陈容均, 李汉章. 融合双重注意力机制的时间序列异常检测模型[J]. 计算机科学与探索, 2024, 18(3): 740-754.
YANG Chaocheng, YAN Xuanhui, CHEN Rongjun, LI Hanzhang. Time Series Anomaly Detection Model with Dual Attention Mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 740-754.
[1] CHOI Y, LIM H, CHOI H, et al. GAN-based anomaly detection and localization of multivariate time series data for power plant[C]//Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing, Busan, Feb 19-22, 2020. Piscataway: IEEE, 2020: 71-74. [2] 段雪源, 付钰, 王坤. 基于VAE-WGAN的多维时间序列异常检测方法[J]. 通信学报, 2022, 43(3): 1-13. DUAN X Y, FU Y, WANG K. Multi-dimensional time series anomaly detection method based on VAE-WGAN[J]. Journal on Communications, 2022, 43(3): 1-13. [3] CHENG W, MA T, WANG X, et al. Anomaly detection for Internet of things time series data using generative adversarial networks with attention mechanism in smart agriculture[J]. Frontiers in Plant Science, 2022, 13: 1-18. [4] XU H, CHEN W, ZHAO N, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in Web applications[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 187-196. [5] YANG K, WANG Y, HAN X, et al. Unsupervised anomaly detection for time series data of spacecraft using multi-task learning[J]. Applied Sciences, 2022, 12(13): 6296-6313. [6] PARK D, HOSHI Y, KEMP C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551. [7] XIA X, PAN X, LI N, et al. GAN-based anomaly detection: a review[J]. Neurocomputing, 2022, 493: 497-535. [8] BRAUCKHOFF D, SALAMATIAN K, MAY M. Applying PCA for traffic anomaly detection: problems and solutions[C]//Proceedings of the 28th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, Rio de Janeiro, Apr 19-25, 2009. Piscataway: IEEE, 2009: 2866-2870. [9] JIANLIANG M, HAIKUN S, LING B. The application on intrusion detection based on K-means cluster algorithm Meng[C]//Proceedings of the 2009 International Forum on Information Technology and Applications, Chengdu, May 15-17, 2009. Piscataway: IEEE, 2009: 150-152. [10] LIU F T, TING K M, ZHOU Z H. Isolation forest[C]//Proceedings of the 8th IEEE International Conference on Data Mining, Pisa, Dec 15-19, 2008. Washington: IEEE Computer Society, 2008: 413-422. [11] HUANG T, ZHU Y, ZHANG Q, et al. An LOF-based adaptive anomaly detection scheme for cloud computing[C]//Proceedings of the IEEE 37th Annual Computer Software and Applications Conference, Kyoto, Jul 22-26, 2013. Washington: IEEE Computer Society, 2013: 206-211. [12] FAROOQI A H, MUNIR A. Intrusion detection system for IP multimedia subsystem using K-nearest neighbor classifier[C]//Proceedings of the 2008 IEEE International Multitopic Conference. Piscataway: IEEE, 2008: 423-428. [13] HABEEBA R A A, NASARUDDINA F, GANIB A, et al. Real-time big data processing for anomaly detection: a survey[J]. International Journal of Information Management, 2019, 45: 289-307. [14] HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 387-395. [15] BASHAR M A, NAYAK R. TAnoGAN: time series anomaly detection with generative adversarial networks[C]//Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence, Canberra, Dec 1-4, 2020. Piscataway: IEEE, 2020: 1778-1785. [16] GEIGER A, LIU D, ALNEGHEIMISH S, et al. TadGAN: time series anomaly detection using generative adversarial networks[C]//Proceedings of the 2020 IEEE International Conference on Big Data , Atlanta, Dec 10-13, 2020. Piscataway: IEEE, 2020: 33-43. [17] LI D, CHEN D, JIN B, et al. MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks[C]//Proceedings of the 28th International Conference on Artificial Neural Networks, Munich, Sep 17-19, 2019: 703-716. [18] WANG X, PI D, ZHANG X, et al. Variational transformer-based anomaly detection approach for multivariate time series[J]. Measurement, 2022, 191: 110791-110808. [19] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [20] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv:1412.3555, 2014. [21] ZHANG Y, ZHU Y, LI X, et al. Anomaly detection based on mining six local data features and BP neural network[J]. Symmetry, 2019, 11(4): 571-591. [22] ZHAO P, CHANG X, WANG M. A novel multivariate time-series anomaly detection approach using an unsupervised deep neural network[J]. IEEE Access, 2021, 9: 109025-109041. [23] YU Q, JIBIN L, JIANG L. An improved ARIMA-based traffic anomaly detection algorithm for wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2016, 12: 9653230-9653239. [24] CHOI K, YI J, PARK C, et al. Deep learning for anomaly detection in time-series data: review, analysis, and guidelines[J]. IEEE Access, 2021, 9: 120043-120065. [25] DAI X, GAO Z. From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2226-2238. [26] XIE Y, ZHANG Y. An intelligent anomaly analysis for intrusion detection based on SVM[C]//Proceedings of the 2012 International Conference on Computer Science and Information Processing, Xi’an, Aug 24-26, 2012. Piscataway: IEEE, 2012: 739-742. [27] CHEN N, TU H, DUAN X, et al. Semisupervised anomaly detection of multivariate time series based on a variational autoencoder[J]. Applied Intelligence, 2023, 53(5): 6074-6098. [28] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [29] CHEN Z, JIAZE E, ZHANG X, et al. Multi-task time series forecasting with shared attention[C]//Proceedings of the 20th International Conference on Data Mining Workshops, Sorrento, Nov 17-20, 2020. Piscataway: IEEE, 2020: 917-925. [30] YAN J, LIU J, WANG L, et al. Land-cover classification with time-series remote sensing images by complete extraction of multiscale timing dependence[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1953-1967. [31] FAN J, HUANG Y, ZHANG K, et al. DWNet: dual-window deep neural network for time series prediction[J]. Complexity, 2021: 1125630. [32] YANG D, WANG J, YAN X, et al. Subway air quality modeling using improved deep learning framework[J]. Process Safety and Environmental Protection, 2022, 163: 487-497. [33] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141. [34] CHEN R, YAN X, WANG S, et al. DA-Net: dual-attention network for multivariate time series classification[J]. Information Sciences, 2022, 610: 472-487. [35] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 10002-10022. [36] ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 11106-11115. [37] RAKTHANMANON T, CAMPANA B, MUEEN A, et al. Searching and mining trillions of time series subsequences under dynamic time warping[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 262-270. [38] MORGACHEV G, GONCHAROV A, STRIJOV V. Distance function selection for multivariate time-series[C]//Proceedings of the 2019 International Conference on Artificial Intelligence: Applications and Innovations, Belgrade, Sep 30-Oct 4, 2019. Piscataway: IEEE, 2019: 66-70. [39] ZHU G, ZHAO H, LIU H, et al. A novel LSTM-GAN algorithm for time series anomaly detection[C]//Proceedings of the 2019 Prognostics and System Health Management Conference, Qingdao, Oct 25-27, 2019. Piscataway: IEEE, 2019: 1-6. [40] LAVIN A, AHMAD S. Evaluating real-time anomaly detection algorithms—the numenta anomaly benchmark[C]//Proceedings of the 14th IEEE International Conference on Machine Learning and Applications, Miami, Dec 9-11, 2015. Piscataway: IEEE, 2015: 38-44. [41] GARG A, ZHANG W, SAMARAN J, et al. An evaluation of anomaly detection and diagnosis in multivariate time series[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(6): 2508-2517. [42] HUET A, NAVARRO J M, ROSSI D. Local evaluation of time series anomaly detection algorithms[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, Aug 14-18, 2022.New York: ACM, 2022: 635-645. [43] MA J, PERKINS S. Time-series novelty detection using one-class support vector machines[J]. The International Joint Conference on Neural Networks, 2003, 3: 1741-1745. [44] ZONG B, SONG Q, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]//Proceedings of the 6th International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018: 1-19. [45] AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD:unsupervised anomaly detection on multivariate time series[C]//Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug 23-27, 2020.New York: ACM, 2020: 3395-3404. [46] LIN S, CLARK R, BIRKE R, et al. Anomaly detection for time series using VAE-LSTM hybrid model[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, May 4-8, 2020. Piscataway: IEEE, 2020: 4322-4326. [47] CARMONA C U, AUBET F X, FLUNKERT V, et al. Neural contextual anomaly detection for time series[C]//Proceedings of the 33rd International Joint Conference on Artificial Intelligence,Vienna, Jul 23-29, 2022: 2843-2851. [48] WANG R, LIU C, MOU X, et al. Deep contrastive one-class time series anomaly detection[J]. arXiv:2207.01472, 2022. [49] CHEN L, CHEN D, YANG F, et al. A deep multi-task representation learning method for time series classification and retrieval[J]. Information Sciences, 2021, 555: 17-32. |
[1] | 王龙业, 肖越, 曾晓莉, 张凯信, 马傲. 王龙业,肖越,曾晓莉,张凯信,马傲[J]. 计算机科学与探索, 2024, 18(4): 978-989. |
[2] | 陈林颖, 刘建华, 郑智雄, 林杰, 徐戈, 孙水华. 多特征交互的方面情感三元组提取[J]. 计算机科学与探索, 2024, 18(4): 1057-1067. |
[3] | 孙水发, 汤永恒, 王奔, 董方敏, 李小龙, 蔡嘉诚, 吴义熔. 动态场景的三维重建研究综述[J]. 计算机科学与探索, 2024, 18(4): 831-860. |
[4] | 王恩龙, 李嘉伟, 雷佳, 周士华. 基于深度学习的红外可见光图像融合综述[J]. 计算机科学与探索, 2024, 18(4): 899-915. |
[5] | 曹传博, 郭春, 李显超, 申国伟. 基于AECD词嵌入的挖矿恶意软件早期检测方法[J]. 计算机科学与探索, 2024, 18(4): 1083-1093. |
[6] | 蓝鑫, 吴淞, 伏博毅, 秦小林. 深度学习的遥感图像旋转目标检测综述[J]. 计算机科学与探索, 2024, 18(4): 861-877. |
[7] | 周燕, 李文俊, 党兆龙, 曾凡智, 叶德旺. 深度学习的三维模型识别研究综述[J]. 计算机科学与探索, 2024, 18(4): 916-929. |
[8] | 陈乾, 洪征, 司健鹏. 融合SENet和Transformer的应用层协议识别方法[J]. 计算机科学与探索, 2024, 18(3): 805-817. |
[9] | 申通, 王硕, 李孟, 秦伦明. 深度学习在动物行为分析中的应用研究进展[J]. 计算机科学与探索, 2024, 18(3): 612-626. |
[10] | 薛金强, 吴秦. 面向图像复原和增强的轻量级交叉门控Transformer[J]. 计算机科学与探索, 2024, 18(3): 718-730. |
[11] | 林穗, 卢超海, 姜文超, 林晓珊, 周蔚林. 融合选择注意力的小样本知识图谱补全模型[J]. 计算机科学与探索, 2024, 18(3): 646-658. |
[12] | 唐瑞雪, 秦永彬, 陈艳平. 多尺寸注意力的命名实体识别方法[J]. 计算机科学与探索, 2024, 18(2): 506-515. |
[13] | 盛锦超, 杜明晶, 孙嘉睿, 李宇蕊. 面向Shapelet空间的多变量时间序列密度聚类算法[J]. 计算机科学与探索, 2024, 18(2): 387-402. |
[14] | 祁宣豪, 智敏. 图像处理中注意力机制综述[J]. 计算机科学与探索, 2024, 18(2): 345-362. |
[15] | 王一凡, 刘静, 马金刚, 邵润华, 陈天真, 李明. 深度学习在乳腺癌影像学检查中的应用进展[J]. 计算机科学与探索, 2024, 18(2): 301-319. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 127
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 188
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||