计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (4): 831-860.DOI: 10.3778/j.issn.1673-9418.2305016
孙水发,汤永恒,王奔,董方敏,李小龙,蔡嘉诚,吴义熔
出版日期:
2024-04-01
发布日期:
2024-04-01
SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong
Online:
2024-04-01
Published:
2024-04-01
摘要: 随着静态场景三维重建算法的不断成熟,动态场景三维重建算法成为近年来的研究热点和研究难点。现有的静态场景三维重建算法对静止的对象有较好的重建效果,一旦场景中对象出现变形或者是相对运动,其重建效果不太理想,因此发展对动态场景的三维重建研究工作是相当重要的。简要介绍三维重建的相关概念及基本知识、静态场景三维重建和动态场景三维重建的研究分类及研究现状;全面总结了动态场景三维重建研究最新进展,将动态场景三维重建按照基于RGB数据源的动态三维重建和基于RGB-D数据源的动态三维重建进行分类,其中RGB数据源下又可划分为基于模板的动态三维重建、基于非刚性运动恢复结构的动态三维重建和RGB数据源下基于学习的动态三维重建,RGB-D数据源下主要总结归纳基于学习的动态三维重建,对各类典型重建算法进行了介绍和对比分析;介绍了动态场景三维重建在医学、智能制造、虚拟现实与增强现实、交通等领域的应用;提出了动态场景三维重建的未来研究方向,并对这个快速发展领域中的各个方向研究进行了展望。
孙水发, 汤永恒, 王奔, 董方敏, 李小龙, 蔡嘉诚, 吴义熔. 动态场景的三维重建研究综述[J]. 计算机科学与探索, 2024, 18(4): 831-860.
SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860.
[1] NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion: real-time dense surface mapping and tracking[C]//Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality. Piscataway: IEEE, 2011: 127-136. [2] WHELAN T, KAESS M, FALLON M, et al. Kintinuous: spatially extended kinectfusion[C]//Proceedings of the RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Sydney, 2012. [3] CHOI S, ZHOU Q Y, KOLTUN V. Robust reconstruction of indoor scenes[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Piscataway: IEEE, 2015: 5556-5565. [4] NEWCOMBE R A, FOX D, SEITZ S M. DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Piscataway: IEEE, 2015. [5] INNMANN M, ZOLLHOFER M, NIE?NER M, et al. Volume-Deform: real-time volumetric non-rigid reconstruction[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 362-379. [6] WHELAN T, SALAS-MORENO R F, GLOCKER B, et al. ElasticFusion: real-time dense SLAM and light source estimation[J]. The International Journal of Robotics Research, 2016, 35(14): 1697-1716. [7] YU T, GUO K, XU F, et al. BodyFusion: real-time capture of human motion and surface geometry using a single depth camera[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Piscataway: IEEE, 2017: 910-919. [8] PRISACARIU V A, K?HLER O, GOLODETZ S, et al. InfiniTAM v3: a framework for large-scale 3D reconstruction with loop closure[J]. arXiv:1708.00783, 2017. [9] DOU M, DAVIDSON P, FANELLO S R, et al. Motion2-Fusion: real-time volumetric performance capture[J]. ACM Transactions on Graphics, 2017, 36(6): 1-16. [10] YU T, ZHENG Z, GUO K, et al. DoubleFusion: real-time capture of human performances with inner body shapes from a single depth sensor[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 7287-7296. [11] SLAVCHEVA M, BAUST M, ILIC S. SobolevFusion: 3D reconstruction of scenes undergoing free non-rigid motion[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 2646-2655. [12] ZHENG Z, YU T, LI H, et al. HybridFusion: real-time performance capture using a single depth sensor and sparse imus[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 384-400. [13] XU L, SU Z, HAN L, et al. UnstructuredFusion: realtime 4D geometry and texture reconstruction using commercial RGBD cameras[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(10): 2508-2522. [14] KLOKOV R, BOYER E, VERBEEK J. Discrete point flow networks for efficient point cloud generation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 694-710. [15] SU Z, XU L, ZHENG Z, et al. RobustFusion: human volumetric capture with data-driven visual cues using a RGBD camera[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 246-264. [16] YANG G, SUN D, JAMPANI V, et al. LASR: learning articulated shape reconstruction from a monocular video[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 15980-15989. [17] YANG G, SUN D, JAMPANI V, et al. ViSEr: video-specific surface embeddings for articulated 3D shape reconstruction[C]//Advances in Neural Information Processing Systems 34, 2021: 19326-19338. [18] YU T, ZHENG Z, GUO K, et al. Function4D: real-time human volumetric capture from very sparse consumer RGBD sensors[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscatawa: IEEE, 2021: 5746-5756. [19] WILLIAMS F, GOJCIC Z, KHAMIS S, et al. Neural fields as learnable kernels for 3D reconstruction[C]//Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 18500-18510. [20] YANG G, VO M, NEVEROVA N, et al. BANMo: building animatable 3D neural models from many casual videos[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 2863-2873. [21] 戴波, 李雁飞, 安海洋, 等. 基于图像的危化品堆垛三维几何动态建模[J]. 控制工程, 2020, 27(1): 70-76. DAI B, LI Y F, AN H Y, et al. Three dimensional geometric dynamic modeling of hazardous chemicals storage based on image[J]. Control Engineering of China, 2020, 27(1): 70-76. [22] SATTLER F, BARNES S, CARRILLO PEREZ B J, et al. Real-time embedded reconstruction of dynamic objects for a 3D maritime situational awareness picture[C]//Proceedings of the European Workshop on Maritime Systems Resilience and Security 2022, Bremerhaven, Jun 20, 2022. [23] 洪阳, 吴康, 李威, 等. 时空一致的动态纹理地图快速生成[J]. 计算机辅助设计与图形学学报, 2020, 32(5): 709-720. HONG Y, WU K, LI W, et al. Fast generation of spatiotemporal- consistent dynamic atlas[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(5): 709-720. [24] VO M, SHEIKH Y, NARASIMHAN S G. Spatiotemporal bundle adjustment for dynamic 3D human reconstruction in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(2): 1066-1080. [25] 王刚, 江成浩, 刘世民, 等. 基于CT三维重建煤骨架结构模型的渗流过程动态模拟研究[J]. 煤炭学报, 2018, 43(5): 1390-1399. WANG G, JIANG C H, LIU S M, et al. Dynamic simulation of seepage process based on CT 3D reconstruction of coal skeleton structure model[J]. Journal of China Coal Society, 2018, 43(5): 1390-1399. [26] 单红梅, 吴岛, 张立斌, 等. 非接触式汽车轴距差动态检测方法[J]. 中南大学学报(自然科学版), 2017, 48(11): 2959-2965. SHAN H M, WU D, ZHANG L B, et al. Dynamic detection method for non-contact vehicle wheelbase difference[J]. Journal of Central South University (Science and Technology), 2017, 48(11): 2959-2956. [27] GOU R, CHEN G, PU X, et al. DR-Fusion: dynamic SLAM 3D reconstruction method of production workshop[C]//Proceedings of the 2022 5th International Conference on Pattern Recognition and Artificial Intelligence, Chendu, Aug 19-21, 2022. New York: IEEE, 2022: 556-561. [28] LIN D, ZHANG A, GU J, et al. Detection of multipoint pulse waves and dynamic 3D pulse shape of the radial artery based on binocular vision theory[J]. Computer Methods and Programs in Biomedicine, 2018, 155: 61-73. [29] SATTLER F, CARRILLO-PEREZ B, BARNES S, et al. Embedded 3D reconstruction of dynamic objects in real time for maritime situational awareness pictures[J]. The Visual Computer, 2023: 1-14. [30] OHASHI T, IKEGAMI Y, NAKAMURA Y. Synergetic reconstruction from 2D pose and 3D motion for wide-space multi-person video motion capture in the wild[J]. Image and Vision Computing, 2020, 104: 104028. [31] GUO K, TAYLOR J, FANELLO S, et al. TwinFusion: high framerate non-rigid fusion through fast correspondence tracking[C]//Proceedings of the 2018 International Conference on 3D Vision, Verona, Sep 5-8, 2018. New York: IEEE, 2018: 596-605. [32] 陈立家, 王凯, 魏天明, 等. 基于动态流场数据的虚拟港口建模方法[J]. 交通运输工程学报, 2022, 22(2): 287-297. CHEN L J, WANG K, WEI T M, et al. Virtual port modeling method based on dynamic fluid field data[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 287-297. [33] 张香玉, 金晖, 王丹. 动态场景下基于VR技术的短视频实时分割[J]. 计算机仿真, 2021, 38(8): 231-235. ZHANG X Y, JIN H, WANG D. Real-time segmentation of short video in dynamic scene based on VR technology[J]. Computer Simulation, 2021, 38(8): 231-235. [34] 韩海燕, 张静. 基于虚拟现实的三维动态场景重建[J]. 现代电子技术, 2018, 41(2): 170-173. HAN H Y, ZHANG J. 3D dynamic scene reconstruction based on virtual reality[J]. Modern Electronics Technique, 2018, 41(2): 170-173. [35] 付饶, 陈日清, 黄迎松, 等. 基于Delaunay剖分的心内膜表面动态三维重建算法[J]. 计算机应用研究, 2018, 35(10): 3113-3116. FU R, CHEN R Q, HUANG Y S, et al. Delaunay based dynamic 3D endocardium surface reconstruction algorithm[J]. Application Research of Computers, 2018, 35(10): 3113-3116. [36] 王星亮, 刘云鹏, 徐志庆, 等. 基于静态磁共振图像构建髌股关节准动态三维运动模型[J]. 中国临床解剖学杂志, 2017, 35(1): 69-73. WANG X L, LIU Y P, XU Z Q, et al. Three- dimensional reconstruction of subject- specific dynamic patella of femoral joint using static magnetic resonance based methodology[J]. Chinese Journal of Clinical Anatomy, 2017, 35(1): 69-73. [37] REDDY N D, VO M, NARASIMHAN S G. CarFusion: combining point tracking and part detection for dynamic 3D reconstruction of vehicles[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 1906-1915. [38] MAHAYUDDIN Z R, SAIF A S. A comprehensive review towards segmentation and detection of cancer cell and tumor for dynamic 3D reconstruction[J]. Asia-Pacific Journal of Information Technology and Multimedia, 2020, 9(1): 28-39. [39] NARASIMHAN S G, TAMBURO R, REDDY D. Dynamic 3D reconstruction of vehicles for safer intersections[R]. Washington: University Transportation Center. Technologies for Safe and Efficient Transportation, 2018. [40] 何爱军, 郑昌琼, 汪天富, 等. 组织多普勒超声心脏图像的动态三维重建[J]. 生物医学工程学杂志, 2005, 22(3): 570-574. HE A J, ZHENG C Q, WANG T F, et al. Dynamic three- dimensional reconstruction of tissue doppler ultrasound heart images[J]. Journal of Biomedical Engineering, 2005, 22(3): 570-574. [41] GUAN J, YANG X, LEE V C S, et al. Full field-of-view pavement stereo reconstruction under dynamic traffic conditions: incorporating height-adaptive vehicle detection and multi-view occlusion optimization[J]. Automation in Construction, 2022, 144: 104615. [42] XUN F X, CANAVESE F, XU H W, et al. Dynamic 3D reconstruction of thoracic cage and abdomen in children and adolescents with scoliosis: preliminary results of optical reflective motion analysis assessment[J]. Journal of Pediatric Orthopaedics, 2020, 40(4): 196-202. [43] KOREHISA S, IKEDA T, OKANO S, et al. A novel histological examination with dynamic three-dimensional reconstruction from multiple immunohistochemically stained sections of a PD-L1-positive colon cancer[J]. Histopathology, 2018, 72(4): 697-703. [44] 卢林鹏, 关柏良, 林淑金. 面向点云三维重建的空间感知对抗神经网络[J]. 计算机工程与科学, 2022, 44(7): 1247-1255. LU L P, GUAN B L, LIN S J. A space-aware adversarial neural network for 3D reconstruction of point cloud[J]. Computer Engineering & Science, 2022, 44(7): 1247-1255. [45] TIAN X, LIU R, WANG Z, et al. High quality 3D reconstruction based on fusion of polarization imaging and binocular stereo vision[J]. Information Fusion, 2022, 77: 19-28. [46] MEERITS S, THOMAS D, NOZICK V, et al. FusionMLS: highly dynamic 3D reconstruction with consumer-grade RGB-D cameras[J]. Computational Visual Media, 2018, 4: 287-303. [47] ZHANG J, MANIATIS C, HORNA L, et al. Dynamic 3D reconstruction improvement via intensity video guided 4D fusion[J]. Journal of Visual Communication and Image Representation, 2018, 55: 540-547. [48] FAN H, QI L, DONG J, et al. Dynamic 3D surface reconstruction using a hand-held camera[C]//Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society, Omni Shoreham, Oct 21-23, 2018. Piscataway: IEEE, 2018: 3244-3249. [49] SIMON T, VALMADRE J, MATTHEWS I, et al. Kronecker-Markov prior for dynamic 3D reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(11): 2201-2214. [50] 李明阳, 陈伟, 王珊珊, 等. 视觉深度学习的三维重建方法综述[J]. 计算机科学与探索, 2023, 17(2): 279-302. LI M Y, CHEN W, WANG S S, et al. Survey on 3D reconstruction methods based on visual deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 279-302. [51] 杨丽婷, 刘孝良, 储修祥, 等. 基于MultiResHNet网络的结构光三维重建技术[J]. 激光与光电子学进展, 2023, 60(20): 149-158. YANG L T, LIU X L, CHU X X, et al. Structured light three-dimensional reconstruction technology based on MultiResHNet[J]. Laser & Optoelectronics Progress, 2023, 60(20): 149-158. [52] XU K, HUANG H, SHI Y, et al. Autoscanning for coupled scene reconstruction and proactive object analysis[J]. ACM Transactions on Graphics, 2015, 34(6): 1-14. [53] ZHANG Y, XU W, TONG Y, et al. Online structure analysis for real-time indoor scene reconstruction[J]. ACM Transactions on Graphics, 2015, 34(5): 1-13. [54] Lin C H, Wang C, Lucey S. SDF-SRN: learning signed distance 3D object reconstruction from static images[C]//Advances in Neural Information Processing Systems 33, 2020: 11453-11464. [55] SCH?PS T, SATTLER T, H?NE C, et al. Large-scale outdoor 3D reconstruction on a mobile device[J]. Computer Vision and Image Understanding, 2017, 157: 151-166. [56] STUTZ D, GEIGER A. Learning 3D shape completion from laser scan data with weak supervision[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 1955-1964. [57] INGALE A K. Real-time 3D reconstruction techniques applied in dynamic scenes: a systematic literature review[J]. Computer Science Review, 2021, 39: 100338. [58] MUSTAFA A, VOLINO M, KIM H, et al. Temporally coherent general dynamic scene reconstruction[J]. International Journal of Computer Vision, 2021, 129(1): 123-141. [59] LI J, GAO W, WU Y, et al. High-quality indoor scene 3D reconstruction with RGB-D cameras: a brief review[J]. Computational Visual Media, 2022, 8(3): 369-393. [60] FAHIM G, AMIN K, ZARIF S. Single-view 3D reconstruction: a survey of deep learning methods[J]. Computers & Graphics, 2021, 94: 164-190. [61] 常丽, 杨志超, 郭雨梅, 等. 改进枝切法在动态三维重建中的应用[J]. 电子测量技术, 2021, 44(9): 22-25. CHANG L, YANG Z C, GUO Y M, et al. Application of improved branch-cut algorithm in dynamic 3D reconstruction[J]. Electronic Measurement Technology, 2021, 44(9): 22-25. [62] SUWAJANAKORN S, KEMELMACHER-SHLIZERMAN I, SEITZ S M. Total moving face reconstruction[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 796-812. [63] SALZMANN M, URTASUN R, FUA P. Local deformation models for monocular 3D shape recovery[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Jun 24-26, 2008. Piscataway: IEEE, 2008: 1-8. [64] BOGO F, BLACK M J, LOPER M, et al. Detailed full-body reconstructions of moving people from monocular RGB-D sequences[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Piscataway: IEEE, 2015. [65] HUANG C H, ALLAIN B, FRANCO J S, et al. Volumetric 3D tracking by detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Jun 26-Jul 1, 2016. Piscataway: IEEE, 2016: 3862-3870. [66] LI H, ADAMS B, GUIBAS L J, et al. Robust single-view geometry and motion reconstruction[J]. ACM Transactions on Graphics, 2009, 28(5): 1-10. [67] FRAGKIADAKI K, SALAS M, ARBELAEZ P, et al. Grouping-based low-rank trajectory completion and 3D reconstruction[C]//Advances in Neural Information Processing Systems 27, 2014. [68] RUSSELL C, YU R, AGAPITO L. Video pop-up: monocular 3D reconstruction of dynamic scenes[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 583-598. [69] RANFTL R, VINEET V, CHEN Q, et al. Dense monocular depth estimation in complex dynamic scenes[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26, 2016. Piscataway: IEEE, 2016: 4058-4066. [70] DAI Y, DENG H, HE M. Dense non-rigid structure-from-motion made easy—a spatial-temporal smoothness based solution[C]//Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 4532-4536. [71] GARG R, ROUSSOS A, AGAPITO L. Dense variational reconstruction of non-rigid surfaces from monocular video[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-27, 2013. Piscataway: IEEE, 2013: 1272-1279. [72] DIBRA E, JAINA H, OZTIRELI C, et al. Human shape from silhouettes using generative HKS descriptors and cross-modal neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Piscataway: IEEE, 2017: 4826-4836. [73] ALLDIECK T, MAGNOR M, XU W, et al. Video based reconstruction of 3D people models[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 8387-8397. [74] CAI H, FENG W, FENG X, et al. Neural surface reconstruction of dynamic scenes with monocular RGB-D camera[C]//Advances in Neural Information Processing Systems 35, 2022: 967-981. [75] CAO M, ZHENG L, LIU X. Single view 3D reconstruction based on improved RGB-D image[J]. IEEE Sensors Journal, 2020, 20(20): 12049-12056. [76] GAO W, TEDRAKE R. Surfelwarp: efficient non-volumetric single view dynamic reconstruction[J]. arXiv:1904.13073, 2019. [77] YU T, ZHENG Z, ZHONG Y, et al. SimulCap: single-view human performance capture with cloth simulation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5504-5514. [78] THOMAS D, SUGIMOTO A. A flexible scene representation for 3D reconstruction using an RGB-D camera[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Dec 1-8, 2013. Washington: IEEE Computer Society, 2013: 2800-2807. [79] LU Y, ZHANG Z, WEN H, et al. RGB-D SLAM using scene flow in dynamic environments[C]//Proceedings of the 2022 28th International Conference on Mechatronics and Machine Vision in Practice, Nanjing, Nov 16-18, 2022. Piscataway: IEEE, 2022: 1-6. [80] TRETSCHK E, TEWARI A, GOLYANIK V, et al. Non-rigid neural radiance fields: reconstruction and novel view synthesis of a dynamic scene from monocular video[C]//Proceedings of the 2021 IEEE International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 12959-12970. [81] LI C, GUO X. Topology-change-aware volumetric fusion for dynamic scene reconstruction[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 258-274. [82] 李玉梅. 基于RGB-D图像序列的动态三维重建[D]. 上海: 上海大学, 2020. LI Y M. Dynamic 3D reconstruction basedon RGB-D image sequence[D]. Shanghai: Shanghai University, 2020. [83] 周驰. 动态场景下基于自监督单目深度估计的稠密SLAM三维重建[D]. 长春: 吉林大学, 2022. ZHOU C. Dense SLAM 3D reconstruction based on self-supervised monocular depth estimation in dynamic scenes [D]. Changchun: Jilin University, 2022. [84] DAI A, NIENER M, ZOLLHFER M, et al. BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface reintegration[J]. ACM Transactions on Graphics, 2017, 36(4): 1-18. [85] OLEYNIKOVA H, TAYLOR Z, FEHR M, et al. Voxblox: incremental 3D euclidean signed distance fields for on-board MAV planning[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, Sep 24-28, 2017. Piscataway: IEEE, 2017: 1366-1373. [86] KELLER M, LEFLOCH D, LAMBERS M, et al. Real-time 3D reconstruction in dynamic scenes using point-based fusion[C]//Proceedings of the 2013 International Conference on 3D Vision, Seattle, Jun 29-Jul 1, 2013. Piscataway: IEEE, 2013: 1-8. [87] JAIMEZ M, KERL C, GONZALEZ-JIMENEZ J, et al. Fast odometry and scene flow from RGB-D cameras based on geometric clustering[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation, Singapore, May 29-Jun 3, 2017. Piscataway: IEEE, 2017: 3992-3999. [88] GUO K, XU F, YU T, et al. Real-time geometry, albedo, and motion reconstruction using a single RGB-D camera[J]. ACM Transactions on Graphics, 2017, 36(4): 1-13. [89] ZHANG T, ZHANG H, LI Y, et al. FlowFusion: dynamic dense RGB-D slam based on optical flow[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation, Paris, May 31-Aug 31, 2020. Piscataway: IEEE, 2020: 7322-7328. [90] SCONA R, JAIMEZ M, PETILLOT Y R, et al. StaticFusion: background reconstruction for dense RGB-D slam in dynamic environments[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, May 21-25, 2018. Piscataway: IEEE, 2018: 3849-3856. [91] RUNZ M, BUFFIER M, AGAPITO L. MaskFusion: real-time recognition, tracking and reconstruction of multiple moving objects[C]//Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality, Munich, Oct 16-20, 2018. Piscataway: IEEE, 2018: 10-20. [92] SLAVCHEVA M, BAUST M, ILIC S. Variational level set evolution for non-rigid 3D reconstruction from a single depth camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(8): 2838-2850. [93] RUNZ M, AGAPITO L. Co-Fusion: real-time segmentation, tracking and fusion of multiple objects[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation, Singapore, May 29-Jun 3, 2017. Piscataway: IEEE, 2017: 4471-4478. [94] ZHANG H, XU F. MixedFusion: real-time reconstruction of an indoor scene with dynamic objects[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 24(12): 3137-3146. [95] LIU Y, PENG X, ZHOU W, et al. Template-based 3D reconstruction of non-rigid deformable object from monocular video[J]. 3D Research, 2018, 9: 1-12. [96] YU R, RUSSELL C, CAMPBELL N D F, et al. Direct, dense, and deformable: template-based non-rigid 3D reconstruction from RGB video[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Piscataway: IEEE, 2015: 918-926. [97] PENG S D, DONG J T, WANG Q Q, et al. Animatable neural radiance fields for modeling dynamic human bodies[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 14314-14323. [98] XU W, CHATTERJEE A, ZOLLH?FER M, et al. Monoperfcap: human performance capture from monocular video[J]. ACM Transactions on Graphics, 2018, 37(2): 1-15. [99] QU C, GAO H, EKENEL H K. Rotation update on manifold in probabilistic NRSFM for robust 3D face modeling[J]. EURASIP Journal on Image and Video Processing, 2015(1): 1-12. [100] ZHU Y, HUANG D, DE LA TORRE F, et al. Complex non-rigid motion 3D reconstruction by union of subspaces[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Piscataway: IEEE, 2014: 1542-1549. [101] KUMAR S, DAI Y, LI H. Spatio-temporal union of subspaces for multi-body non-rigid structure-from-motion[J]. Pattern Recognition, 2017, 71: 428-443. [102] SLAVCHEVA M, BAUST M, ILIC S. SobolevFusion: 3D reconstruction of scenes undergoing free non-rigid motion[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 2646-2655. [103] ZOLLHOFER M, STOTKO P, GORLITZ A, et al. State of the art on 3D reconstruction with RGB-D cameas[J]. Computer Graphics Forum, 2018, 37(2): 625-652. [104] HABERMANN M, XU W, ZOLLHOEFER M, et al. Livecap: real-time human performance capture from monocular video[J]. ACM Transactions on Graphics, 2019, 38(2): 1-17. [105] XIANG D, JOO H, SHEIKH Y. Monocular total capture: posing face, body, and hands in the wild[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 10965-10974. [106] KOCABAS M, ATHANASIOU N, BLACK M J. Vibe: video inference for human body pose and shape estimation[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 5253-5263. [107] LI H, YU J, YE Y, et al. Realtime facial animation with on-the-fly correctives[J]. ACM Transactions on Graphics, 2013, 32(4): 1-10. [108] TKACH A, PAULY M, TAGLIASACCHI A. Sphere-meshes for real-time hand modeling and tracking[J]. ACM Transactions on Graphics, 2016, 35(6): 1-11. [109] PONS-MOLL G, BAAK A, HELTEN T, et al. Multisensor-fusion for 3D full-body human motion capture[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Piscataway: IEEE, 2010: 663-670. [110] ZHANG J, LI X, WAN Z, et al. FDNeRF: few-shot dynamic neural radiance fields for face reconstruction and expression editing[C]//Proceedings of the SIGGRAPH Asia 2022 Conference Papers, Vancouver, Aug 8-11, 2022. New York: ACM, 2022. [111] GANPULE S, DAPHALAPURKAR N P, RAMESH K T, et al. A three-dimensional computational human head model that captures live human brain dynamics[J]. Journal of Neurotrauma, 2017, 34(13): 2154-2166. [112] WANG K, ZHANG G, YANG J, et al. Dynamic human body reconstruction and motion tracking with low-cost depth cameras[J]. The Visual Computer, 2021, 37: 603-618. [113] SIDHU V, TRETSCHK E, GOLYANIK V, et al. Neural dense non-rigid structure from motion with latent space constraints[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 204-222. [114] GOLYANIK V. Robust methods for dense monocular non-rigid 3D reconstruction and alignment of point clouds[M]. Berlin: Springer Nature, 2020. [115] SLAVCHEVA M, BAUST M, CREMERS D, et al. KillingFusion: non-rigid 3D reconstruction without correspondences[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 5474-5483. [116] KOZLOV C, SLAVCHEVA M, ILIC S. Patch-based non-rigid 3D reconstruction from a single depth stream[C]//Proceedings of the 2018 International Conference on 3D Vision, Verona, Sep 5-8, 2018. Piscataway: IEEE, 2018: 42-51. [117] AGUDO A. Segmentation and 3D reconstruction of non-rigid shape from RGB video[C]//Proceedings of the 2020 IEEE International Conference on Image Processing, Abu Dhabi, Oct 25-28, 2020. Piscataway: IEEE, 2020: 2845-2849. [118] MALTI A, HARTLEY R, BARTOLI A, et al. Monocular template-based 3D reconstruction of extensible surfaces with local linear elasticity[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-27, 2013. Piscataway: IEEE, 2013: 1522-1529. [119] ZOLLHOFER M, NIE?NER M, IZADI S, et al. Real-time non-rigid reconstruction using an RGB-D camera[J]. ACM Transactions on Graphics, 2014, 33(4): 1-12. [120] 刘洋. 基于单目视频序列的非刚性动态目标三维重建算法研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2018. LIU Y. Research on 3D non-rigid reconstruction of dynamic and deforming object using monocular video sequence[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center), 2018. [121] BREGLER C, HERTZMANN A, BIERMANN H. Recovering non-rigid 3D shape from image streams[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, Jun 15-15, 2020. Piscataway: IEEE, 2000: 690-696. [122] AKHTER I, SHEIKH Y, KHAN S, et al. Trajectory space: a dual representation for nonrigid structure from motion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(7): 1442-1456. [123] DAI Y, LI H, HE M. A simple prior-free method for non-rigid structure-from-motion factorization[J]. International Journal of Computer Vision, 2014, 107: 101-122. [124] WANG Y P, SUN Z L, LAM K M. An effective approach for NRSFM of small-size image sequences[J]. PLoS One, 2015, 10(7): e0132370. [125] 杨苏. 基于NRSFM的动态场景三维重建方法研究[D]. 西安: 陕西科技大学, 2020. YANG S. Research on 3D reconstruction of dynamic scene based on NRSFM[D]. Xi’an: Shaanxi University of Science & Technology, 2020. [126] TAYLOR J, BORDEAUX L, CASHMAN T, et al. Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences[J]. ACM Transactions on Graphics, 2016, 35(4): 1-12. [127] DOU M, KHAMIS S, DEGTYAREV Y, et al. Fusion4D: real-time performance capture of challenging scenes[J]. ACM Transactions on Graphics, 2016, 35(4): 1-13. [128] LU F, ZHOU B, ZHANG Y, et al. Real-time 3D scene reconstruction with dynamically moving object using a single depth camera[J]. The Visual Computer, 2018, 34: 753-763. [129] LI Y, ZHANG T, NAKAMURA Y, et al. SplitFusion: simultaneous tracking and mapping for non-rigid scenes[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Oct 24-Jan 24, 2020. Piscataway: IEEE, 2020: 5128-5134. [130] 李翔宇, 张雪芹. ORBTSDF-SCNet: 一种动态场景在线三维重建方法[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 284-294. LI X Y, ZHANG X Q. QORBTSDF-SCNet: an online 3D reconstruction method for dynamic scene[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2023, 49(2): 284-294. [131] PAN Z, HOU J, YU L. Optimization RGB-D 3-D reconstruction algorithm based on dynamic SLAM[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-13. [132] ALJAZ B, MICHAEL Z, CHRISTIAN T, et al. Deep-Deform: learning non-rigid RGB-D reconstruction with semi-supervised data[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 7002-7012. [133] STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Oct 7-12, 2012. Piscataway: IEEE Press, 2012: 573-580. [134] SILBERMAN N, FERGUS R. Indoor scene segmentation using a structured light sensor[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops, Barcelona, Nov 6-13, 2011. Piscataway: IEEE, 2011. [135] ARMENI I, SENER O, ZAMIR A R, et al. 3D semantic parsing of large-scale indoor spaces[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Piscataway: IEEE, 2016: 1534-1543. [136] GLOCKER B, IZADI S, SHOTTON J, et al. Real-time RGB-D camera relocalization[C]//Proceedings of the 2013 IEEE International Symposium on Mixed and Augmented Reality, Adelaide, Oct 1-4, 2013. Piscataway: IEEE, 2013: 173-179. [137] PHAM Q H, UY M A, HUA B S, et al. LCD: learned cross-domain descriptors for 2D-3D matching[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 11856-11864. [138] SCHOPS T, SATTLER T, POLLEFEYS M. BAD SLAM: bundle adjusted direct RGB-D slam[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 134-144. [139] HANDA A, WHELAN T, MCDONLA J, et al. A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation, Hong Kong, China, May 31-Jun 7, 2014. Piscataway: IEEE, 2014: 1524-1531. [140] DANIEL V, ILYA B, WOJCIECH M, et al. Articulated mesh animation from multi-view silhouettes[J]. ACM Transactions on Graphics, 2008, 27(3): 1-9. [141] EBNER T, FELDMANN I, RENAULT S, et al. Multi-view reconstruction of dynamic real-world objects and their integration in augmented and virtual reality applications[J]. Journal of the Society for Information Display, 2017, 25(3): 151-157. [142] WONG B, SPETSAKIS M. Scene reconstruction and robot navigation using dynamic fields[J]. Autonomous Robots, 2000, 8: 71-86. [143] MALIK A, LHACHEMI H, PLOENNIGS J, et al. An application of 3D model reconstruction and augmented reality for real-time monitoring of additive manufacturing[J]. Procedia Cirp, 2019, 81: 346-351. [144] QIN C, SCHLEMPER J, CABALLERO J, et al. Convolutional recurrent neural networks for dynamic MR image reconstruction[J]. IEEE Transactions on Medical Imaging, 2018, 38(1): 280-290. [145] SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A deep cascade of convolutional neural networks for MR image reconstruction[C]//Proceedings of the 25th International Conference on Information Processing in Medical Imaging, Boone, Jun 25-30, 2017. Berlin: Springer International Publishing, 2017: 647-658. [146] MATEO C M, CORRALES J A, MEZOUAR Y. Hierarchical, dense and dynamic 3D reconstruction based on VDB data structure for robotic manipulation Tasks[J]. Frontiers in Robotics and AI, 2021, 7: 600387. [147] ORTS-ESCOLANO S, RHEMANN C, FANELLO S, et al. Holoportation: virtual 3D teleportation in real-time[C]//Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo, Oct 16-19, 2016. New York: ACM, 2016: 741-754. [148] 吕东岳, 黄志蓓, 陶冠宏, 等. 使用简易深度成像设备的高尔夫挥杆动态贝叶斯网络三维重建[J]. 电子与信息学报, 2015, 37(9): 2076-2081. LV D Y, HUANG Z P, TAO G H, et al. Dynamic Bayesian network model based golf swing 3D reconstruction using simple depth imaging device[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2076-2081. |
[1] | 于范, 张菁. 滑窗注意力多尺度均衡的密集行人检测算法[J]. 计算机科学与探索, 2024, 18(5): 1286-1300. |
[2] | 曾凡智, 冯文婕, 周燕. 深度学习的自然场景文本识别方法综述[J]. 计算机科学与探索, 2024, 18(5): 1160-1181. |
[3] | 张凯丽, 王安志, 熊娅维, 刘运. 基于Transformer的单幅图像去雾算法综述[J]. 计算机科学与探索, 2024, 18(5): 1182-1196. |
[4] | 蓝鑫, 吴淞, 伏博毅, 秦小林. 深度学习的遥感图像旋转目标检测综述[J]. 计算机科学与探索, 2024, 18(4): 861-877. |
[5] | 王恩龙, 李嘉伟, 雷佳, 周士华. 基于深度学习的红外可见光图像融合综述[J]. 计算机科学与探索, 2024, 18(4): 899-915. |
[6] | 曹传博, 郭春, 李显超, 申国伟. 基于AECD词嵌入的挖矿恶意软件早期检测方法[J]. 计算机科学与探索, 2024, 18(4): 1083-1093. |
[7] | 周燕, 李文俊, 党兆龙, 曾凡智, 叶德旺. 深度学习的三维模型识别研究综述[J]. 计算机科学与探索, 2024, 18(4): 916-929. |
[8] | 杨超城, 严宣辉, 陈容均, 李汉章. 融合双重注意力机制的时间序列异常检测模型[J]. 计算机科学与探索, 2024, 18(3): 740-754. |
[9] | 申通, 王硕, 李孟, 秦伦明. 深度学习在动物行为分析中的应用研究进展[J]. 计算机科学与探索, 2024, 18(3): 612-626. |
[10] | 薛金强, 吴秦. 面向图像复原和增强的轻量级交叉门控Transformer[J]. 计算机科学与探索, 2024, 18(3): 718-730. |
[11] | 彭斌, 白静, 李文静, 郑虎, 马向宇. 面向图像分类的视觉Transformer研究进展[J]. 计算机科学与探索, 2024, 18(2): 320-344. |
[12] | 王一凡, 刘静, 马金刚, 邵润华, 陈天真, 李明. 深度学习在乳腺癌影像学检查中的应用进展[J]. 计算机科学与探索, 2024, 18(2): 301-319. |
[13] | 王昆, 郭威, 王尊严, 韩文强. 赤足足迹识别研究综述[J]. 计算机科学与探索, 2024, 18(1): 44-57. |
[14] | 高洁, 赵心馨, 于健, 徐天一, 潘丽, 杨珺, 喻梅, 李雪威. 结合密度图回归与检测的密集计数研究[J]. 计算机科学与探索, 2024, 18(1): 127-137. |
[15] | 刘华玲, 陈尚辉, 曹世杰, 朱建亮, 任青青. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||