[1] LI M, ZHANG Z X, HUANG K Q, et al. Estimating the number of people in crowded scenes by MID based foreground segmentation and head-shoulder detection[C]//Procceedings of the 19th International Conference on Pattern Recognition, Tampa, Dec 8-11, 2008. Piscataway: IEEE, 2008: 1-4.
[2] 赵宏伟, 徐亮, 王冶, 等. 基于尺度融合的密集人群计数[J]. 计算机系统应用, 2021, 30(10): 1-11.
ZHAO H W, XU L, WANG Y, et al. Crowd counting based on scale fusion[J]. Computer Systems and Applications, 2021, 30(10): 1-11.
[3] WAN J, CHAN A. Modeling noisy annotations for crowd counting[C]//Advances in Neural Information Processing Systems 33,?Dec?6-12,?2020: 3386-3396.
[4] CHAN A B, LIANG Z S J, VASCONCELOS N. Privacy pres-erving crowd monitoring: counting people without people models or tracking[C]//Procceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Jun 23-28, 2008. Piscataway: IEEE, 2008: 1-7.
[5] 李鹏博, 王向文. 基于深度特征融合生成的密集人群计数网络[J]. 计算机应用与软件, 2021, 38(3): 154-158.
LI P B, WANG X W. Dense crowd counting network based on depth feature fusion[J]. Computer Aplications and Software, 2021, 38(3): 154-158.
[6] 郭濠奇. 基于深度学习的人群计数算法研究[D]. 赣州: 江西理工大学, 2021.
GUO H Q. A crowd counting algorithm based on deep learning[D]. Ganzhou: Jiangxi University of Science and Technology, 2021.
[7] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(9): 1627-1645.
[8] GAO G, LIU Q, WANG Y. Counting dense objects in remote sensing images[C]//Procceedings of the 2020 IEEE Intern-ational Conference on Acoustics, Speech and Signal Proce-ssing, Barcelona, May 4-8, 2020: 4137-4141.
[9] ONORO-RUBIO D, L’OPEZ-SASTRE R J. Towards pers-pective-free object counting with deep learning[C]//LNCS 9906: Procceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 615-629.
[10] YANG Y, LI G, WU Z, et al. Reverse perspective network for perspective-aware object counting[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 16-18, 2020: 4374-4383.
[11] LEMPITSKY V, ZISSERMAN A. Learning to count objects in images[C]//LAFFERTY J, WILLIAMS C, SHAWE J, et al. [C]//Advances in Neural Information Processing Systems 23, Vancouver, Dec 6-9, 2010: 1324-1332.
[12] 刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4): 622-635.
LIU L, KUANG G Y. Overview of image textural feature extraction methods[J]. Journal of Image and Graphics,2009, 14(4): 622-635.
[13] 景林, 林耀海, 温永仙, 等. 结合色彩特征和空域特征的成捆原木轮廓识别[J]. 计算机系统应用, 2013, 22(7): 196-199.
JING L, LIN Y H, WEN Y X, et al. Method for outline identification of bundled logs based upon color and spatial features[J]. Computer Systems and Applications, 2013, 22(7): 196-199.
[14] 王昱棠. 基于视觉检测的仓储物料计数方法研究[J].计算机工程与设计, 2014, 35(7): 2598-2601.
WANG Y T. Research on warehouse material automatic counting method based on visual inspection[J]. Computer Engineering and Design, 2014, 35(7): 2598-2601.
[15] 龙德帆, 樊尚春, 庞宏冰. 用于原木材积检测的图像处理与分析算法[J]. 北京航空航天大学学报, 2005(1): 82-85.
LONG D F, FANG S C, PANG H B. Image processing and analysis algorithms for measuring log volume[J]. Journal of Beijing University of Aeronauics and Astronautics, 2005(1): 82-85.
[16] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Procceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-25, 2005. Piscataway: IEEE, 2005: 886-893.
[17] LEIBE B, SEEMANN E, SCHIELE B. Pedestrian detection in crowded scenes[C]//Procceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-25, 2005. Piscat-away: IEEE, 2005: 878-885.
[18] NOBLE W S. What is a support vector machine?[J]. Nature Biotechnology, 2006, 24(12): 1565-1567.
[19] WALACH E, WOLF L. Learning to count with CNN boos-ting[C]//LNCS 9906: Procceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 660-676.
[20] 吕红燕, 冯倩. 随机森林算法研究综述[J]. 河北省科学院学报, 2019, 36(3): 37-41.
LV H Y, FENG Q. A review of random forests algorithm[J]. Journal of the Hebei Academy of Sciences, 2019, 36(3): 37-41.
[21] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017: 2961-2969.
[22] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9906: Procceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[23] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceed-ings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016: 779-788.
[24] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017: 2999-3007.
[25] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Reco-gnition, Seattle, Jun 16-18, 2020: 10778-10787.
[26] DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019: 6569-6578.
[27] TIAN Z, SHEN C, CHEN H, et al. Fcos: fully convolu-tional one-stage object detection[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019: 9627-9636.
[28] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//LNCS 12346: Proce-edings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[29] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Comp-uter Vision. Piscataway: IEEE, 2021: 10012-10022.
[30] EVERINGHAM M, VAN GOOL L, WILLIAMS C K, et al. The pascal visual object classes(VOC) challenge[J]. Intern-ational Journal of Computer Vision, 2010, 88(2): 303-338.
[31] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//LNCS 8693: Proce-edings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[32] 姬丽娜, 陈庆奎, 陈圆金, 等. 基于GPU的视频流人群实时计数[J]. 计算机应用, 2017, 37(1): 145-152.
JI L N, CHEN Q K, CHEN Y J, et al. Real time crowd counting method from video stream based on GPU[J]. Journal of Computer Applications, 2017, 37(1): 145-152.
[33] 杜培德, 严华. 基于多尺度空间注意力特征融合的人群计数网络[J]. 计算机应用, 2021, 41(2): 537-543.
DU P D, YAN H. Crowd counting network based on multi-scale spatial attention feature fusion[J]. Journal of Comp-uter Applications, 2021, 41(2): 537-543.
[34] CHAN A B, NUNO V A. Bayesian poisson regression for crowd counting[C]//Procceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Sep 29-Oct 2, 2009: 545-551.
[35] SHELHAMER E, LONG J, DARRELL T. Fully convol-utional networks for semantic segmentation[J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[36] IDREES H, SALEEMI I, SEIBERT C, et al. Multi-source multi-scale counting in extremely dense crowd images[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013: 2547-2554.
[37] SAM D B, SURYA S, BABU R V. Switching convolutional neural network for crowd counting[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017: 4031-4039.
[38] LI Y, ZHANG X, CHEN D. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018: 1091-1100.
[39] KANG D, ANTONI C. Crowd counting by adaptively fusing predictions from an image pyramid[J]. arXiv:1805. 06115, 2018.
[40] VIRESH R, LE H, HOAI M. Iterative crowd counting[C]//LNCS 11211: Proceedings of the 15th European Confe-rence on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 278-293.
[41] SAM D B, BABU R V. Top-down feedback for crowd coun-ting convolutional neural network[C]//Procceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018: 7323-7330.
[42] SHI Z, ZHANG L, LIU Y, et al. Crowd counting with deep negative correlation learning[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Reco-gnition, Salt Lake City, Jun 19-21, 2018: 5382-5390.
[43] ZHANG Y Y, ZHOU D, CHEN S, et al. Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Comp-uter Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016: 589-597.
[44] LARADJI I H, ROSTAMZADEH N, PINHEIRO P O, et al. Where are the blobs: counting by localization with point supervision[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 547-562.
[45] IDREES H, TAYYAB M, ATHREY K, et al. Composition loss for counting, density map estimation and localization in dense crowds[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 532-546.
[46] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017: 936-944.
[47] GAO J, LIN W, ZHAO B, et al. C3 framework: an open-source Pytorch code for crowd counting[J]. arXiv:1907. 02724, 2019. |