[1] 曹家乐, 李亚利, 孙汉卿, 等. 基于深度学习的视觉目标检测技术综述[J]. 中国图象图形学报, 2022, 27(6): 1697-1722.
CAO J L, LI Y L, SUN H Q, et al. A survey on deep learn-ing visual object detection[J]. Journal of Image and Graphics, 2022, 27(6): 1697-1722.
[2] 耿创, 宋品德, 曹立佳. YOLO算法在目标检测中的研究进展[J]. 兵器装备工程学报, 2022, 43(9): 162-173.
GENG C, SONG P D, CAO L J. Research progress of YOLO algorithm in target detection[J]. Journal of Ordnance Equipment Engineering, 2022, 43(9): 162-173.
[3] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceeding of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Reco-gnition. Washington: IEEE Computer Society, 2005: 886-893.
[4] PAPAGEORGIOU C P, OREN M, POGGIO T. A general framework for object detection[C]//Proceeding of the 1998 International Conference on Computer Vision. Washington: IEEE Computer Society, 1998: 555-562.
[5] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[6] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[7] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Repre-sentations, San Diego, May 7-9, 2015.
[8] 金梅, 李义辉, 张立国, 等. 基于注意力机制改进的轻量级目标检测算法[J/OL]. 激光与光电子学进展 [2023-03-06]. http://kns.cnki.net/kcms/detail/31.1690.tn.20220713.1425.
314.html.
JIN M, LI Y H, ZHANG L G, et al. Improved lightweight target detection algorithm based on attention mechanism[J/OL]. Laser & Optoelectronics Progress[2023-03-06]. http://kns.cnki.net/kcms/detail/31.1690.tn.20220713.1425.314.html.
[9] 李维刚, 杨潮, 蒋林, 等. 基于改进YOLOv4算法的室内场景目标检测[J]. 激光与光电子学进展, 2022, 59(18): 1815003.
LI W G, YANG C, JIANG L, et al. Indoor scene target dete-ction based on improved YOLOv4 algorithm[J]. Advances in Laser and Optoelectronics, 2022, 59(18): 1815003.
[10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich fea-ture hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington:IEEE Computer Society, 2014: 580-587.
[11] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Wash-ington: IEEE Computer Society, 2015: 1440-1448.
[12] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2017, 39(6): 1137-1149.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceeding of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[14] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceed-ings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 779-788.
[15] REDMON J, FARHADI A. YOLO9000: better, faster, stron-ger[C]//Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 7263-7271.
[16] REDMON J, FARHADI A. YOLOv3: an incremental imp-rovement[J]. arXiv:1804.02767, 2018.
[17] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington:IEEE Computer Society, 2017: 2980-2988.
[19] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applica-tions[J]. arXiv:1704.04861, 2017.
[20] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 4510-4520.
[21] 李仁鹰, 钱慧芳, 郭佳豪, 等. 基于M-YOLOv4模型的轻量化目标检测算法[J]. 国外电子测量技术, 2022, 41(4): 15-21.
LI R Y, QIAN H F, GUO J H, et al. Lightweight target dete-ction algorithm based on M-YOLOv4 model[J]. Foreign Elec-tronic Measurement Technology, 2022, 41(4): 15-21.
[22] TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 6105-6114.
[23] 孔维刚, 李文婧, 王秋艳, 等. 基于改进YOLOv4算法的轻量化网络设计与实现[J]. 计算机工程, 2022, 48(3): 181-188.
KONG W G, LI W J, WANG Q Y, et al. Design and imple-mentation of lightweight network based on improved YOLOv4 algorithm[J]. Computer Engineering, 2022, 48(3): 181-188.
[24] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Compu-ter Vision and Pattern Recognition. Piscataway: IEEE, 2020: 390-391.
[25] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion. Piscataway: IEEE, 2020: 1580-1589.
[26] HUANG L, YANG Y, DENG Y, et al. Densebox: unifying landmark localization with end to end object detection[J]. arXiv:1509.04874, 2015.
[27] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]//Proceedings of the 15th European Confere-nce on Computer Vision. Cham: Springer, 2018: 734-750.
[28] ZHOU X, ZHUO J, KRAHENBUHL P. Bottom-up object detection by grouping extreme and center points[C]//Pro-ceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 850-859.
[29] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[30] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Compu-ter Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 7132-7141.
[31] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Pro-ceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11534-11542.
[32] 陈一潇, 阿里甫·库尔班, 林文龙, 等. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245.
CHEN Y X, Alifu·Kuerban, LIN W L, et al. CA-YOLOv5 for crowded pedestrian detection[J]. Computer Engineering and Applications, 2022, 58(9): 238-245.
[33] 王玲敏, 段军, 辛立伟. 引入注意力机制的YOLOv5安全帽佩戴检测方法[J]. 计算机工程与应用, 2022, 58(9): 303-312.
WANG L M, DUAN J, XIN L W. YOLOv5 helmet wear detection method with introduction of attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9): 303-312.
[34] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition. Wash-ington: IEEE Computer Society, 2016: 770-778.
[35] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 8759-8768.
[36] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recogni-tion. Washington: IEEE Computer Society, 2017: 2117-2125.
[37] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[38] ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cyber-netics, 2022, 52(8): 8574-8586.
[39] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[40] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 12993-13000.
[41] 范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学精密工程, 2020, 28(5): 1152-1164.
FAN L L, ZHAO H W, ZHAO H Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Optics and Precision Engineering, 2020, 28(5): 1152-1164. |